next up previous contents
Next: Bibliography Up: Path Integral Monte Carlo Previous: Debye Model   Contents


Equation of State Tables

The following tables contain the equation of state from PIMC simulations of hydrogen and deuterium using different time steps and nodal surfaces. It should be noted that all simulations have been performed using order $n_{\rm A}=1$ in the action expansion for the off-diagonal pair density matrix (Eq. 2.38) and order $n_{\rm E}=2$ in the energy expansion. As discussed in section  [*], there are corrections to pressure and energy due to higher orders. They are particularly substantial for the pressure at low temperatures. In the following table, we list the raw simulation data without the corrections.

Table D.1: Equation of state table with pressure and internal energy per atom for hydrogen at the density of $0.000983\,\rm
gcm^{-3}$ ($r_s=14$) calculated with PIMC simulations of $N_P=32$ pairs of protons and electrons, using free particle nodes, a time step of $\tau^{-1}=10^6\rm K$, $n_{\rm A}=1$ orders in the action expansion formula 2.38 and $n_{\rm E}=2$ orders in the energy expansion.
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$  
166$\,$667 2.641 $\pm$ 0.001 41.091 $\pm$ 0.018
125$\,$000 1.956 $\pm$ 0.001 29.979 $\pm$ 0.026
62$\,$500 0.902 $\pm$ 0.002 11.827 $\pm$ 0.042
31$\,$250 0.343 $\pm$ 0.001 -2.880 $\pm$ 0.046
15$\,$625 0.143 $\pm$ 0.001 -11.298 $\pm$ 0.064
12$\,$500 0.117 $\pm$ 0.001 -11.903 $\pm$ 0.032
10$\,$000 0.094 $\pm$ 0.001 -12.429 $\pm$ 0.027
8929 0.085 $\pm$ 0.001 -12.652 $\pm$ 0.032
7812 0.076 $\pm$ 0.002 -12.971 $\pm$ 0.084
6944 0.063 $\pm$ 0.001 -13.476 $\pm$ 0.053
6250 0.059 $\pm$ 0.001 -14.189 $\pm$ 0.037
5000 0.053 $\pm$ 0.001 -14.708 $\pm$ 0.026


Table D.2: EOS table for hydrogen at the density of $0.00270\,\rm gcm^{-3}$ ($r_s$=10) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau^{-1}=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.1)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$  
166$\,$667 7.166 $\pm$ 0.004 39.979 $\pm$ 0.024
125$\,$000 5.264 $\pm$ 0.004 28.594 $\pm$ 0.027
62$\,$500 2.342 $\pm$ 0.005 9.466 $\pm$ 0.053
31$\,$250 0.879 $\pm$ 0.006 -4.885 $\pm$ 0.068
15$\,$625 0.397 $\pm$ 0.006 -11.382 $\pm$ 0.043
12$\,$500 0.323 $\pm$ 0.005 -11.945 $\pm$ 0.046
10$\,$000 0.270 $\pm$ 0.003 -12.491 $\pm$ 0.039
8929 0.234 $\pm$ 0.004 -12.903 $\pm$ 0.033
7812 0.203 $\pm$ 0.004 -13.543 $\pm$ 0.028
6944 0.191 $\pm$ 0.004 -13.715 $\pm$ 0.035
6250 0.168 $\pm$ 0.004 -14.282 $\pm$ 0.073
5000 0.151 $\pm$ 0.004 -14.759 $\pm$ 0.018





Table D.3: EOS table for hydrogen at the density of $0.0105\,\rm gcm^{-3}$ ($r_s=8$) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.1)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$  
166$\,$667 13.770 $\pm$ 0.010 38.683 $\pm$ 0.036
125$\,$000 10.060 $\pm$ 0.010 27.120 $\pm$ 0.037
625$\,$00 4.337 $\pm$ 0.006 7.412 $\pm$ 0.034
31$\,$250 1.639 $\pm$ 0.009 -5.848 $\pm$ 0.041
15$\,$625 0.723 $\pm$ 0.012 -11.593 $\pm$ 0.037
12$\,$500 0.630 $\pm$ 0.008 -12.062 $\pm$ 0.037
10$\,$000 0.480 $\pm$ 0.006 -12.865 $\pm$ 0.028
8929 0.432 $\pm$ 0.005 -13.223 $\pm$ 0.025
7812 0.371 $\pm$ 0.007 -13.881 $\pm$ 0.044
6944 0.344 $\pm$ 0.006 -14.081 $\pm$ 0.050
6250 0.308 $\pm$ 0.004 -14.559 $\pm$ 0.019
5000 0.297 $\pm$ 0.006 -14.797 $\pm$ 0.019


Table D.4: EOS table for hydrogen at the density of $0.0125\,\rm gcm^{-3}$ ($r_s=6$) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.1)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$  
166$\,$667 31.912 $\pm$ 0.021 36.602 $\pm$ 0.028
125$\,$000 23.036 $\pm$ 0.018 24.734 $\pm$ 0.032
62$\,$500 9.586 $\pm$ 0.020 4.727 $\pm$ 0.034
31$\,$250 3.716 $\pm$ 0.012 -6.923 $\pm$ 0.027
15$\,$625 1.672 $\pm$ 0.026 -11.783 $\pm$ 0.048
12$\,$500 1.380 $\pm$ 0.025 -12.461 $\pm$ 0.059
10$\,$000 1.096 $\pm$ 0.012 -13.171 $\pm$ 0.037
8929 0.992 $\pm$ 0.011 -13.472 $\pm$ 0.038
7812 0.884 $\pm$ 0.011 -13.843 $\pm$ 0.030
6944 0.808 $\pm$ 0.014 -14.269 $\pm$ 0.029
6250 0.769 $\pm$ 0.013 -14.368 $\pm$ 0.022
5000 0.676 $\pm$ 0.016 -14.938 $\pm$ 0.019


Table D.5: EOS table for hydrogen at the density of $0.0421\,\rm gcm^{-3}$ ($r_s=4$) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.1)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$  
166$\,$667 102.747 $\pm$ 0.131 32.261 $\pm$ 0.050
125$\,$000 73.082 $\pm$ 0.111 20.229 $\pm$ 0.046
62$\,$500 29.462 $\pm$ 0.131 1.051 $\pm$ 0.050
31$\,$250 11.863 $\pm$ 0.066 -8.144 $\pm$ 0.017
25$\,$000 9.075 $\pm$ 0.131 -9.809 $\pm$ 0.051
20$\,$000 7.320 $\pm$ 0.141 -10.985 $\pm$ 0.053
15$\,$625 5.530 $\pm$ 0.111 -12.057 $\pm$ 0.053
12$\,$500 4.325 $\pm$ 0.162 -12.982 $\pm$ 0.059
10$\,$000 3.700 $\pm$ 0.049 -13.543 $\pm$ 0.034
8929 3.353 $\pm$ 0.069 -13.909 $\pm$ 0.035
7812 3.065 $\pm$ 0.086 -14.222 $\pm$ 0.033
6944 2.893 $\pm$ 0.064 -14.382 $\pm$ 0.036
6250 2.622 $\pm$ 0.075 -14.605 $\pm$ 0.035
5000 2.307 $\pm$ 0.100 -14.943 $\pm$ 0.028


Table D.6: EOS table for hydrogen at the density of $0.0999\,\rm gcm^{-3}$ ($r_s=3$) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.1). The last column shows the fraction of permuting electrons given by $1-P_1$ (see section 2.6.8)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
166$\,$667 234.381 $\pm$ 0.242 28.422 $\pm$ 0.042 0.00031 $\pm$ 0.00003
125$\,$000 164.852 $\pm$ 0.212 16.489 $\pm$ 0.027 0.00065 $\pm$ 0.00004
62$\,$500 67.526 $\pm$ 0.303 -1.166 $\pm$ 0.044 0.006 $\pm$ 0.001
31$\,$250 27.763 $\pm$ 0.192 -8.961 $\pm$ 0.030 0.033 $\pm$ 0.006
25$\,$000 21.410 $\pm$ 0.242 -10.282 $\pm$ 0.037 0.039 $\pm$ 0.002
20$\,$000 17.428 $\pm$ 0.293 -11.297 $\pm$ 0.049 0.046 $\pm$ 0.004
15$\,$625 13.602 $\pm$ 0.343 -12.260 $\pm$ 0.050 0.047 $\pm$ 0.005
12$\,$500 11.462 $\pm$ 0.454 -13.087 $\pm$ 0.079 0.036 $\pm$ 0.004
10$\,$000 10.600 $\pm$ 0.172 -13.593 $\pm$ 0.028 0.036 $\pm$ 0.003
8929 10.257 $\pm$ 0.151 -13.866 $\pm$ 0.027 0.022 $\pm$ 0.001
7812 9.433 $\pm$ 0.131 -14.220 $\pm$ 0.032 0.024 $\pm$ 0.002
6944 9.055 $\pm$ 0.141 -14.438 $\pm$ 0.028 0.016 $\pm$ 0.001
6250 8.498 $\pm$ 0.212 -14.593 $\pm$ 0.040 0.025 $\pm$ 0.005
5000 7.996 $\pm$ 0.212 -14.835 $\pm$ 0.018 0.017 $\pm$ 0.002




Table D.7: EOS table for deuterium at the density of $0.307\,\rm gcm^{-3}$ ($r_s$=2.6) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau=10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 248.561 $\pm$ 0.161 14.675 $\pm$ 0.020 0.003 $\pm$ 0.001
62$\,$500 103.121 $\pm$ 0.344 -2.143 $\pm$ 0.038 0.017 $\pm$ 0.001
50$\,$000 77.568 $\pm$ 0.217 -5.167 $\pm$ 0.025 0.030 $\pm$ 0.001
31$\,$250 44.905 $\pm$ 0.235 -9.160 $\pm$ 0.022 0.076 $\pm$ 0.002
25$\,$000 35.512 $\pm$ 0.366 -10.384 $\pm$ 0.029 0.105 $\pm$ 0.003
20$\,$000 29.997 $\pm$ 0.228 -11.228 $\pm$ 0.024 0.129 $\pm$ 0.003
15$\,$625 24.503 $\pm$ 0.325 -12.211 $\pm$ 0.023 0.136 $\pm$ 0.006
12$\,$500 21.402 $\pm$ 0.399 -12.823 $\pm$ 0.030 0.134 $\pm$ 0.008
10$\,$000 20.200 $\pm$ 0.309 -13.547 $\pm$ 0.024 0.092 $\pm$ 0.005
8929 19.038 $\pm$ 0.402 -13.822 $\pm$ 0.051 0.073 $\pm$ 0.007
7812 18.311 $\pm$ 0.455 -14.167 $\pm$ 0.045 0.063 $\pm$ 0.002
6944 17.574 $\pm$ 0.540 -14.374 $\pm$ 0.055 0.065 $\pm$ 0.004
6250 17.029 $\pm$ 0.413 -14.529 $\pm$ 0.042 0.060 $\pm$ 0.004
5000 15.817 $\pm$ 0.445 -14.736 $\pm$ 0.043 0.057 $\pm$ 0.003


Table D.8: EOS table for deuterium at the density of $0.390\,\rm gcm^{-3}$ ($r_s$=2.4) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 308 $\pm$ 5 13.2 $\pm$ 0.4 0.002 $\pm$ 0.000
62$\,$500 134 $\pm$ 1 -2.5 $\pm$ 0.1 0.020 $\pm$ 0.002
31$\,$250 60 $\pm$ 3 -9.4 $\pm$ 0.2 0.102 $\pm$ 0.004
15$\,$625 34 $\pm$ 4 -12.1 $\pm$ 0.3 0.204 $\pm$ 0.008
10$\,$000 17 $\pm$ 5 -14.0 $\pm$ 0.4 0.225 $\pm$ 0.014







Table D.9: EOS table for deuterium at the density of $0.506\,\rm gcm^{-3}$ ($r_s$=2.2) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 411 $\pm$ 2 13.3 $\pm$ 0.1 0.004 $\pm$ 0.000
62$\,$500 183 $\pm$ 5 -2.5 $\pm$ 0.3 0.032 $\pm$ 0.001
31$\,$250 84 $\pm$ 3 -9.4 $\pm$ 0.2 0.172 $\pm$ 0.005
15$\,$625 50 $\pm$ 5 -12.0 $\pm$ 0.3 0.302 $\pm$ 0.005
10$\,$000 36 $\pm$ 5 -13.5 $\pm$ 0.3 0.320 $\pm$ 0.010


Table D.10: EOS table for deuterium at the density of $0.674\,\rm gcm^{-3}$ ($r_s$=2.0) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
1$\,$000$\,$000 5433 $\pm$ 5 245.7 $\pm$ 0.3 0.000 $\pm$ 0.000
500$\,$000 2624 $\pm$ 4 113.2 $\pm$ 0.2 0.000 $\pm$ 0.000
250$\,$000 1225 $\pm$ 3 45.7 $\pm$ 0.1 0.000 $\pm$ 0.000
125$\,$000 548 $\pm$ 2 12.2 $\pm$ 0.1 0.008 $\pm$ 0.000
62$\,$500 246 $\pm$ 2 -3.1 $\pm$ 0.1 0.081 $\pm$ 0.001
31$\,$250 125 $\pm$ 2 -9.1 $\pm$ 0.1 0.365 $\pm$ 0.003
15$\,$625 75 $\pm$ 3 -11.7 $\pm$ 0.1 0.701 $\pm$ 0.003
10$\,$000 63 $\pm$ 5 -12.5 $\pm$ 0.2 0.829 $\pm$ 0.004
7812 51 $\pm$ 4 -13.5 $\pm$ 0.2 0.833 $\pm$ 0.010
5000 68 $\pm$ 9 -14.4 $\pm$ 0.4 0.629 $\pm$ 0.007





Table D.11: EOS table for deuterium at the density of $0.674\,\rm gcm^{-3}$ ($r_s$=2.0) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 540 $\pm$ 14 11.7 $\pm$ 0.6 0.008 $\pm$ 0.001
62$\,$500 236 $\pm$ 7 -3.7 $\pm$ 0.3 0.071 $\pm$ 0.005
31$\,$250 128 $\pm$ 5 -9.2 $\pm$ 0.2 0.271 $\pm$ 0.006
15$\,$625 59 $\pm$ 9 -12.8 $\pm$ 0.4 0.459 $\pm$ 0.009
10$\,$000 48 $\pm$ 10 -13.6 $\pm$ 0.5 0.534 $\pm$ 0.010
7812 53 $\pm$ 12 -13.7 $\pm$ 0.5 0.557 $\pm$ 0.011
5000 26 $\pm$ 25 -15.3 $\pm$ 1.2 0.666 $\pm$ 0.016


Table D.12: EOS table for deuterium at the density of $0.838\,\rm gcm^{-3}$ ($r_s$=1.86) calculated with PIMC simulations using FP nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
1$\,$000$\,$000 6752 $\pm$ 8 245.3 $\pm$ 0.3 0.000 $\pm$ 0.000
500$\,$000 3245 $\pm$ 5 111.9 $\pm$ 0.2 0.000 $\pm$ 0.000
250$\,$000 1506 $\pm$ 3 44.3 $\pm$ 0.1 0.000 $\pm$ 0.000
125$\,$000 688 $\pm$ 3 11.7 $\pm$ 0.1 0.013 $\pm$ 0.000
62$\,$500 307 $\pm$ 1 -3.6 $\pm$ 0.0 0.133 $\pm$ 0.001
31$\,$250 166 $\pm$ 3 -9.1 $\pm$ 0.1 0.488 $\pm$ 0.002
15$\,$625 107 $\pm$ 7 -11.5 $\pm$ 0.3 0.804 $\pm$ 0.002
10$\,$000 85 $\pm$ 5 -12.4 $\pm$ 0.2 0.896 $\pm$ 0.001
7812 69 $\pm$ 7 -13.0 $\pm$ 0.3 0.919 $\pm$ 0.001
5000 93 $\pm$ 12 -14.4 $\pm$ 0.5 0.864 $\pm$ 0.005


Table D.13: EOS table for deuterium at the density of $0.838\,\rm gcm^{-3}$ ($r_s$=1.86) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 654 $\pm$ 16 10.3 $\pm$ 0.6 0.017 $\pm$ 0.002
62$\,$500 322 $\pm$ 5 -3.1 $\pm$ 0.2 0.122 $\pm$ 0.004
31$\,$250 169 $\pm$ 6 -9.3 $\pm$ 0.2 0.351 $\pm$ 0.005
15$\,$625 102 $\pm$ 10 -12.2 $\pm$ 0.4 0.562 $\pm$ 0.010
10$\,$000 97 $\pm$ 13 -12.5 $\pm$ 0.5 0.674 $\pm$ 0.009
7812 69 $\pm$ 27 -13.8 $\pm$ 1.0 0.689 $\pm$ 0.015
5000 49 $\pm$ 25 -14.7 $\pm$ 1.0 0.777 $\pm$ 0.009


Table D.14: EOS table for deuterium at the density of $1.01\,\rm gcm^{-3}$ ($r_s$=1.75) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=2\cdot10^6\rm K$, $\tau_F^{-1}=4\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
125$\,$000 815 $\pm$ 6 10.6 $\pm$ 0.2 0.023 $\pm$ 0.001
62$\,$500 377 $\pm$ 9 -4.0 $\pm$ 0.3 0.177 $\pm$ 0.007
31$\,$250 199 $\pm$ 15 -9.9 $\pm$ 0.4 0.435 $\pm$ 0.009
15$\,$625 162 $\pm$ 16 -11.3 $\pm$ 0.5 0.675 $\pm$ 0.017
10$\,$000 138 $\pm$ 37 -12.3 $\pm$ 1.1 0.755 $\pm$ 0.015


Table D.15: EOS table for deuterium at the density of $1.60\,\rm gcm^{-3}$ ($r_s$=1.50) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=4\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
250$\,$000 2865 $\pm$ 12 41.2 $\pm$ 0.2 0.006 $\pm$ 0.000
125$\,$000 1328 $\pm$ 24 9.5 $\pm$ 0.5 0.070 $\pm$ 0.003
62$\,$500 676 $\pm$ 26 -3.9 $\pm$ 0.5 0.340 $\pm$ 0.005
31$\,$250 409 $\pm$ 58 -9.3 $\pm$ 1.1 0.650 $\pm$ 0.011
15$\,$625 403 $\pm$ 104 -9.9 $\pm$ 2.0 0.821 $\pm$ 0.013


Table D.16: EOS table for deuterium at the density of $2.76\,\rm gcm^{-3}$ ($r_s$=1.25) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=4\cdot10^6\rm K$, $\tau_F^{-1}=8\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
250$\,$000 5043 $\pm$ 37 39.5 $\pm$ 0.4 0.024 $\pm$ 0.001
125$\,$000 2477 $\pm$ 30 9.2 $\pm$ 0.3 0.222 $\pm$ 0.005
62$\,$500 1509 $\pm$ 88 -2.1 $\pm$ 1.0 0.568 $\pm$ 0.008
31$\,$250 1068 $\pm$ 93 -7.3 $\pm$ 1.1 0.813 $\pm$ 0.008
15$\,$625 960 $\pm$ 174 -8.9 $\pm$ 2.0 0.911 $\pm$ 0.002


Table D.17: EOS table for deuterium at the density of $5.39\,\rm gcm^{-3}$ ($r_s$=1.0) calculated with PIMC simulations using VDM nodes, $N_P=32$, $\tau_B^{-1}=8\cdot10^6\rm K$, $\tau_F^{-1}=16\cdot10^6\rm K$, $n_{\rm A}=1$ and $n_{\rm E}=2$ (see Tab. D.6)
$T \:(\rm{K})$ $p \:(\rm{GPa})$ $E \:(\rm{eV})$   $1-P_1$
500$\,$000 20814 $\pm$ 143 101.5 $\pm$ 0.8 0.009 $\pm$ 0.000
250$\,$000 10545 $\pm$ 153 39.8 $\pm$ 0.9 0.122 $\pm$ 0.003
125$\,$000 6343 $\pm$ 221 14.6 $\pm$ 1.3 0.485 $\pm$ 0.007
62$\,$500 4877 $\pm$ 404 5.9 $\pm$ 2.3 0.785 $\pm$ 0.003


next up previous contents
Next: Bibliography Up: Path Integral Monte Carlo Previous: Debye Model   Contents
Burkhard Militzer 2003-01-15