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ABSTRACT

Ab initio free energy calculations are employed to derive the entropy of liquid and superionic
water over a wide range of conditions in the interiors of Uranus and Neptune. The resulting
adiabats are much shallower in pressure-temperature space than those adopted for earlier
models of Uranus and Neptune. Our models for their interiors are thus much colder, increasing
the likelihood that diamond rain or the recently predicted phase separation of planetary ices
has occurred in the mantles of ice giant planets. Based on our ab initio data, we construct
interior models for Uranus and Neptune with the Concentric MacLaurin Spheroid method that
match the existing gravity measurements. We compare fully convective models with models
that include a convective boundary between liquid and superionic water. We also share a code
to characterize giant planet atmospheres where para and ortho hydrogen as well as helium are
present.

1. INTRODUCTION

The primary mechanism for secular cooling within planets is convection because heat transport via
diffusion and radiation is comparatively inefficient (Hubbard 1984). The magnetic fields of Jupiter,
Saturn, Uranus and Neptune but also that of Earth and Mercury provide direct evidence that con-
vection occurs in their interiors. Ample evidence of plate tectonics in our plant demonstrates that
convection also occurs in solid, highly viscous layers. For Uranus and Neptune this implies that if
there existed a layer of superionic water in their interior, it would mostly likely be convective (Ma-
tusalem et al. 2022). For convection not to occur either requires an endothermic first order phase
transition (Schubert et al. 1975) or the presence of a gradient in composition (Leconte & Chabrier
2012). If a planet’s interior has differentiated into multiple convective layers the most plausible as-
sumption would be to represent each layer by an adiabat and to match pressure and temperature at
the boundaries (Hubbard 1984). The entropy of the outermost layer can typically be constrained by
observations.
NASA has made a Uranus orbiter and probe mission a priority for this decade (NASA 2021)

generating new interest in understanding the formation and interior structure of Uranus and Neptune.
Comparatively little is known about these two ice giant planets because so far they have only been
visited by only a single spacecraft, Voyager 2, which during its fly-bys in 1986 and 1989 made the
surprising discovery that both planets have nondipolar magnetic fields. Ruzmaikin & Starchenko
(1991) and Stanley & Bloxham (2004, 2006) showed that such fields emerge if they are generated
from convection restricted to a thin outer mantle layer. Consistent with that interpretation, Militzer
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(2024a) proposed the outer layer is composed of water and hydrogen while there is an inner layer
composed of carbon, nitrogen and a depth dependent concentration of hydrogen, which stabilizes
this layer against convection. This structure was based on the spontaneous phase separation of
planetary ices that was observed in ab initio simulations of H2O, CH4, and NH3 at high pressure and
temperature. The resulting models were consistent with the gravity measurements and the proposed
geometry for the magnetic dynamo layer.
As an alternative explanation for the nondipolar fields, Soderlund et al. (2013) performed magneto-

hydrodynamic simulations of Uranus’s and Neptune’s magnetic fields assuming thick and thin shell
dynamos. They suggested that the nondipolar magnetic fields are the result of turbulent convection
that is driven by thermal buoyancy. Various dynamo types are discussed by Soderlund & Stanley
(2020).
The interpretation of the gravity measurements has not been unique (Movshovitz & Fortney 2022)

but it is generally assumed that a large part of their interior is composed of planetary ices, H2O, CH4,
and NH3 (Podolak et al. 1995). Helled et al. (2020) reviewed the different methods and assumptions
that have been invoked to characterize the structure and evolution of Uranus and Neptune. Nettel-
mann et al. (2013) matched the available gravity data with interior models consisting of three layers,
each homogeneous and convective. The outer two layers are composed of hydrogen, helium, and
water, though their compositions differ, while the innermost layer is a rocky core.
Helled & Bodenheimer (2014) developed core-accretion models for Uranus and Neptune, investigat-

ing the conditions that resulted in the observed masses and solid-to-gas ratios. Bailey & Stevenson
(2021) suggested that the difference in heat flux between Uranus and Neptune indicates varying
levels of water-hydrogen mixing in their outer envelopes. Movshovitz & Fortney (2022) constructed
ensembles of interior models for Uranus and Neptune with agnostic pressure-density relationships,
constrained their moments of inertia and discussed gravity measurements of a future low-periapse
orbiter.
Neuenschwander et al. (2024) investigated the possible relationships of pressure, density, temper-

ature and composition by incorporating convective and nonconvective layers into Uranus’s interior
and compared models that include a water-rich layer with those that do not. Most recently Lin et al.
(2025) constructed interior models for Uranus under a variety of assumptions and concluded that
its mantle cannot be composed solely of water. French et al. (2024) provided additional constraints
for Uranus’s gravity coefficients by analyzing occultation data for its rings. Stixrude et al. (2021)
investigated the thermal evolution of Uranus’s interior and proposed that the lack of a strong heat
flux might be due to the formation of a growing core composed of superionic water.
The relevance of superionic water to planetary science was first demonstrated by Cavazzoni et al.

(1999) who showed with ab initio computer simulations that at high pressure and elevated tempera-
tures, water assumes a hydrid state, in which the larger oxygen atoms remain confined to their lattice
sites like atoms in a solid while the smaller hydrogen nuclei diffuse through the oxygen sublattice like
the atoms of a liquid. French et al. (2009) and Redmer et al. (2011) performed simulations of a wider
range of pressure-temperature conditions and predicted superionic water to exist in the interiors of
Uranus and Neptune. At that point, all simulations of superionic water had assumed a body-centered
cubic (bcc) lattice at oxygen atoms because Cavazzoni et al. (1999) had initialized their simulations
with solid ice X structure. Wilson et al. (2013) demonstrated with ab initio Gibbs free energy calcu-
lations that a more densely packed face-centered cubic (fcc) structure is thermodynamically preferred
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for most pressure-temperature conditions. With novel shock compression experiments, Millot et al.
(2019) confirmed the existence of the superionic fcc phase. Later diamond anvil cell experiments by
Prakapenka et al. (2021) showed that the bcc structure exists but it is confined to a rather small
range of pressure-temperature conditions and probably not relevant for ice giant interiors as we il-
lustrate in Fig. 1. Superionic behavior has also been predicted in H2O-NH3 mixtures (Bethkenhagen
et al. 2015) and will likely be a very common phenomenon among OCNH compounds (de Villa et al.
2023, 2025). At ∼20 Mbar, superionic fcc structure has been predicted to transform into a different
superionic structure with P21/c symmetry (Sun et al. 2015; Militzer & Zhang 2018) but the required
pressures exceed the conditions in the interiors of Uranus and Neptune.
In this paper, we report results from ab initio computer simulations of liquid and fcc superionic

water under conditions of ice giant interiors. As we explain in the following Methods section, we
first describe how we calculate adiabats of mixtures of para and ortho hydrogen with helium in the
atmospheres of Uranus and Neptune, which enables us to derive adiabats for their atmospheres. Then
we describe our ab initio simulations and thermodynamic integration (TDI) method to derive the
entropy as a function of density and temperature, which allows us to construct adiabatic temperature
profiles for their icy mantles. Finally we explain how we construct models for the interiors of Uranus
and Neptune with the Concentric MacLaurin Spheroid (CMS) method. We follow Militzer (2024a)
when we incorporate results from atomistic ab initio simulations into planet-scale CMS calculations
to propose models for the interior structures of Uranus and Neptune that are consistent with existing
gravity measurements and compatible with the proposed convective regimes.
In the Results section, we report our findings from of all three methods. Our calculations predict

the outer hydrogen-helium layers of Uranus and Neptune to be hotter than earlier models assumed.
Conversely, our adiabats of liquid and superionic water much shallower in pressure-temperature space
than earlier predictions, which means that we predict the deep interiors of Uranus and Neptune to be
30% colder than earlier models. If we change the model assumptions and assume there is an offset in
temperature between liquid and superionic adiabats because of latent heat release, the deviation from
earlier models reduces to 15%. Finally, we conclude by discussing the implications of the proposed
colder interiors for future research on ice giant planets.

2. METHODS

2.1. Para and Ortho Hydrogen

In the outer atmospheres of giant planets, hydrogen and helium behave like ideal gases. While
interaction effects can be neglected, internal degrees of freedom of the hydrogen molecules matter,
which renders the difference between para and ortho hydrogen important. The para state is the
ground state. It is not degenerate, its nuclear spin wave function is antisymmetric (S = 0), and its
rotational wave function is symmetric, which implies that only states with even rotational quantum
number J can be occupied. Conversely, ortho hydrogen has a symmetric nuclear spin wave function
(S = 1) with degeneracy 2S + 1 = 3. Its rotational wave function is antisymmetric and only states
with odd J can occupied. The para-to-ortho ratio is temperature dependent, as the corresponding
eigenstates have different energies, but a temperature of 166.1 K in Jupiter’s atmosphere is already
high enough for the para-to-ortho ratio to approach its high-temperature limit of 1:3. The conversion
between para and ortho states is slow because collisions between molecules typically do not flip nuclear
spins. So when measurements in giant planet atmospheres found the para-to-ortho ratios to deviate
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Figure 1. Pressure-temperature profiles from various models for the interiors of Uranus and Neptune are
plotted over the phase diagram of H2O that was constructed by combining results from Prakapenka et al.
(2021) and Wilson et al. (2013). The slope of the adiabats (dash-dotted lines) that we derived with ab
initio free energy calculations (triangles and circles) are much shallower than previous predictions by Chau
et al. (2011) and Nettelmann et al. (2013). The arrows emphasize that the temperatures of our continuous
adiabats (models of type B) at the core-mantle boundaries are ∼1400 K lower than predicted by Redmer
et al. (2011). The deviations would have been even larger if Redmer et al. (2011) had not begun their
adiabats at a 400 K lower temperature at 3 GPa. For this pressure, our models predict higher temperatures
of 1630 and 1540 K for Uranus and Neptune, which is a result of differing adiabats in the hydrogen-helium
layer in Fig. 4. Our models of type C assume that the liquid-to-superionic transition introduces a step into
adiabats because of latent heat release.

from the equilibrium value, they provide an estimate for the speed of convection that brought up
gases from deep and hotter regions.
Overall one may assume the atmosphere of a giant planet be in thermal equilibrium. To characterize

its state, we follow the work by Saumon & Chabrier (1991). Molecular hydrogen has 46 bound
electronic states, α. Each has many vibrational states, m, and rotational states, J (Huber 2013).
Their energies have been carefully characterized (NIST 2025):

ϵ(α,m, J) = Te + ωe(m+ 1
2
)− ωexe

(
m+ 1

2

)2
+BeJ(J + 1)−DeJ

2(J + 1)2 − αe(m+ 1
2
)J(J + 1), (1)
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where Te is the electronic groundstate energy, ωe the first vibrational constant, ωexe the second
vibrational constant, Be the rotational constant, De the centrifugal distortion constant, and αe is the
rotational constant. They all depend slightly on α (NIST 2025). In equilibrium one does not need
to treat para and ortho hydrogen as separate species but can instead write down a single partition
function that includes both nuclear spin states S = 0 and 1 with their corresponding degeneracy
factors of g = 1 (Σg and even J ; Σu and odd J), g = 3 (Σg and odd J ; Σu and even J), and g = 4
(electronic states Π and ∆):

Z =
∑

α,m,S,J

g(α, J) (2J + 1)ωαm e−ϵ(α,m,J)/kBT . (2)

where the factor (2J +1) represents the multiplicities of rotational states. The factor ωαm represents
the occupation probabilities for given electronic and vibrational states, α and m. The sum can be
simplified because even J only contribute to para states with S = 0 and odd J only matter for ortho
states with S = 1. From this partition function, we can derive the internal energy, entropy, and
compute the para and ortho fractions as a function of temperature. We have made our source code
for this calculation available (Militzer 2025a), which includes the translational degrees of freedom
and allows one to compute the equation of state of a hydrogen-helium mixtures in the atmospheres
of giant planets. Under those conditions, one finds that most states in Eq. 2 have too high energies
to be occupied and this calculation reduces to a sum over a surprisingly small number of states.
Most importantly, Eq. 2 enables one to compute an absolute entropy to anchor the adiabats for the
outer layers of giant planets under low density conditions where it is impractical to perform ab initio
simulations. The two following sections discuss them in detail because they are the preferred tool to
characterize materials at high pressure.

2.2. Ab initio simulations

To characterize H2O in the mantles of Uranus and Neptune, we performed density functional molec-
ular dynamics (MD) simulations with the Vienna Ab Initio Package (VASP) (Kresse & Furthmüller
1996). We employed the Perdew, Burke, and Ernzerhof functional (Perdew et al. 1996) and used
hard pseudo-potentials with the projector augmented-wave (PAW) method (Kresse & Joubert 1999).
The valence configurations for the atoms were O([He]2s22p4) and H(1s1). Following Wilson et al.
(2013), all simulations employed 144 atoms. Liquid simulations used cubic cells of the appropriate
volumes. For the superionic simulations with face-centered cubic oxygen sublattice, we constructed
monoclinic but nearly cubic supercells with parameters a = b, c/a = 1.095, α = β = 90◦, and
γ = 78.5◦ (Militzer 2016). We consistently employed a 2×2×2 Monkhorst-Pack grid to sample the
Brillouin zone. The electronic wave functions were expanded in a plane-wave basis with an energy
cut-off of 900 eV. All molecular dynamics simulations used a time step of 0.2 fs to accommodate
the motion of the light hydrogen nuclei. The temperature of our NVT ensembles was regulated by a
Nosé-Hoover thermostat (Nosé 1984).

2.3. Thermodynamic integration

The entropy is a measure of the total number of microstates in an ensemble and is thus not directly
accessible with MD and MC simulations, which only construct a representative subset of microstates
and do not attempt to perform an integration over all states. On the other hand, MD and MC method



6 B. Militzer

are very good in calculating free energy differences between two similar ensembles via thermodynamic
integration, which enables one to indirectly derive the entropy, S, from S = (E−F )/T , where E and
F are the internal and Helmholtz free energies. Like pressure, the internal energy can be derived from
a single MD or MC simulation (Allen & Tildesley 1987). Gaining access to the free energy requires
one to construct a thermodynamic integration path (de Wijs et al. 1998) from a state of known free
energy, Fid. For liquids, we choose an ideal gas and, for solids, we use an Einstein crystal, in which
every particle is tethered to a particular lattice site. The integration should be stable and efficient,
which is why we employ the following two-step integration procedure (Morales et al. 2009; Wilson
& Militzer 2012a,b; Militzer 2013; Wahl et al. 2013; González-Cataldo et al. 2014; Wahl & Militzer
2015) to derive the Helmholtz free energy, F , of the DFT system for given temperature, volume, and
particle number,

FDFT =(FDFT − FPP ) + (FPP − Fid) + Fid , (3)

=

∫ 1

0

dλ ⟨UDFT − UPP ⟩λ +
∫ 1

0

dλ ⟨UPP − Uid⟩λ + Fid . (4)

The angular brackets represent an average for a single λ value that was computed by sampling
particle configurations according to a hydrid potential energy function, Uλ(r) = Ua(r) + λ(Ub(r) −
Ua(r)). Because DFT simulations are orders of magnitude more expensive than calculations with
pair potentials (PP), one wants the first integration step in Eq. 3 to be most efficient so that only
a few integration steps are needed and the average of UDFT − UPP converges quickly. For given
temperature, volume, and composition, we perform a preliminary DFT-MD simulation and fit a pair
potential to the computed DFT forces (Izvekov et al. 2003). In this process, three points need to be
considered:
(1) For solids, the pair potentials and the Einstein potentials contribute to holding particles in

place while their combined forces should match the DFT forces. So we choose pair and Einstein
potentials such that each contribute approximately half. For every atom type, we derive a harmonic
force constant, k, from 3/2kBT = k/2 (r⃗i(t)− r⃗0i )

2
where r⃗i(t) marks the position of particle i and r⃗0i

is its position in a perfect lattice. We then lower k by 50%, subtract Einstein forces from the DFT
forces, and fit a pair potential to the remaining forces. For liquids, pair potentials are fitted to the
unaltered DFT forces.
(2) Atoms repel each other strongly at close range because of Pauli exclusion effects and Coulomb

repulsion. There are for example no pairs of oxygen atoms in the simulation in Fig. 2 that are closer
than 1.9 Å. The fitted pair potentials thus need to be extrapolated towards small distances. The
extrapolated part of the pair potentials are not invoked in the first integration step in Eq. 3 but they
become important in the second where we gradually turn off the pair potentials. For liquids, the limit
λ → 0 is equivalent to the limit of infinite temperature where particles are uniformly distributed and
the average pair potential energy and its λ derivative are given by

⟨UPP ⟩λ=0 =
4π

V

∫
dr r2 UPP (r) and

⟨UPP ⟩
dλ

∣∣∣∣
λ=0

= β ⟨UPP ⟩2 − β
〈
U2
PP

〉
with β = 1/kBT . (5)

The integrals are finite because we construct our potentials so that they go to zero for large distances.
In the limit of high temperature, the particles become arbitrarily close, for which typical DFT codes
cannot construct electronic orbitals. This is another reason for why we first switch from DFT to



Interior temperature of Uranus and Neptune 7

0 1 2 3 4
Inter-particle distance [Å]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ir 

po
te

nt
ia

l [
Ha

]

(a) O-H bonding
O-O

O-H non-bonding
H-H

0 1 2 3
0

1

2

0.36

0.34

(b)

0 500 1000 1500 2000 2500
MD time [fs]

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.56 (c)

Po
te

nt
ia

l d
iff

er
en

ce
 V

D
FT

V p
p [

Ha
/H

2O
]

= 0.00
= 0.25

= 0.50
= 0.75

= 1.00

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
1/4 for noninteract.  PP               for PP DFT       

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Po
te

nt
ia

l e
ne

rg
y 

di
ffe

re
nc

e 
[H

a/
H 2

O]

(d)

Vbo
PP

VDFT Vbo
PP

Vnb
PP

VDFT Vnb
PP

0.0 0.5 1.0

0.00

0.05

Figure 2. Panel (a) shows pair potentials between O and H atoms that were derived from a simulation
of liquid H2O at 3000 K, 1.75 g cm−3, and 23 GPa. The arrows mark the beginning of the extrapolation
towards smaller distances for each pair of atom types. For bonding and nonbonding pair potentials, panels
(b) and (c) display the DFT and pair potential energy as function of MD time. Their time averages are
represented by the diamond and plus symbols on the right side of panel (d). In the inset, we subtracted their
respective λ=0.5 value from both functions to better compare changes in their magnitudes. The purpose of
panel (d) is illustrate that one obtains the same integral when one performs the thermodynamic integration
with bonding and nonbonding potentials. On the left side, we plot the average pair potential energies as
function of λ1/4 that we derived classical MC calculations. Their integrals over λ are represented by the two
thick lines. On right side, dashed and dot-dashed lines continue the integration into the regime where we
switch from pair potentials to DFT forces. At λ = 1, both lines converge to −0.42 Ha/H2O emphasizing
that both integration methods yield consistent results.
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pair potentials in Eq. 3. During construction, we extrapolate out pair potentials linearly to small
distances (see Fig. 2) so that the value of ⟨UPP ⟩λ=0 in Eq. 5 remains finite.
(3) Pair potentials cannot accurately represent the nonadditive many-body forces in hot, dense

liquids and solids. However, Eq. 3 yields exact results as long as the ensembles generated by the
DFT and by PP potentials are not too different, which can become an issue for strongly bonded,
molecular fluids like hydrogen (Militzer 2013). The pair potentials will accurately represent the
strong intramolecular H2 bond but then indiscriminately applies it to all pairs of atoms neglecting
all intermolecular repulsion, which leads to the formation of unphysical clusters because no many-
body bonding effects are considered. To prevent such instabilities, we follow Soubiran & Militzer
(2015) and remove the attractive part from the pair potentials by setting it constant beyond the
first potential minimum. Then we uniformly shift the potential up so that approaches zero for large
distances, as we show in Fig. 2.

2.4. CMS Calculations and Planetary Interior Models

Following Nettelmann et al. (2013), we adopted for Uranus and Neptune the equatorial radii of
25559 and 24766 km, planet masses of 14.536 and 17.148 Earth masses, rotation periods of 17:14:40
and 16:06:40 hours and 1 bar temperatures of 76 and 72 K. The target values for gravitational
moments were J2 × 106 = 3510.99 ± 0.72 and 3529 ± 45 as well as J4 × 106 = −33.61 ± 1 and
−35.8± 2.9 as determined by the Voyager 2 spacecraft. We calculate these moments with,

Jn = − 4π

Man

1∫
0

dµ

rmax(µ)∫
0

dr rn+2 Pn(µ) ρ(r, µ) , (6)

from the planet’s interior density that we represent a function of radius, r, and µ = cos(θ), the cosine
of colatitude. Pn are Legendre polynomials, M is the planet’s mass and a its equatorial radius.
We construct models of the interior structure of Uranus and Neptune with the accelerated version

(Militzer et al. 2019) of the nonperturbative Concentric MacLaurin Spheroid (CMS) method (Hub-
bard 2013), which represents the interior of these rotating planets by a series of NS = 512 axisym-
metric spheroids. Their shapes are adjusted until a state of hydrostatic equilibrium is established
that takes into account gravitational and centrifugal forces. The rotation period and the equatorial
radius are reproduced by construction but matching the planet’s total mass requires some discussion.
Hubbard & Militzer (2016) adjusted the density of the innermost spheroid to match Jupiter’s total
mass. Militzer et al. (2022) and Militzer & Hubbard (2024) varied the heavy element abundances of
the outer and inner layers to match Jupiter’s mass and J2. To match the total mass of Uranus and
Neptune, we scale the equatorial radii of the three inner layers, r1, r2, and r3 as the CMS method
converges to a hydrostatic solution.
As illustrated in Fig. 3, we followed Militzer (2024a) by constructing interior models with four

layers: 1) a protosolar mixture of hydrogen and helium, 2) mixture of H2O and hydrogen, 3) carbon-
nitrogen-hydrogen mixture and 4) the rocky core composed of iron and rock. We introduce the
parameters H1, H2, and H3 to characterize the following hydrogen fractions. We assume our ocean
layer to be homogeneous and convective, with H1 = NH/2NO defining its hydrogen fraction in terms
of the number of hydrogen and oxygen nuclei, NH and NO. We assume that the carbon-nitrogen-
hydrogen layer is stably stratified because it hydrogen contents vary between H2 at the top and H3
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Figure 3. Two representative interior models for Uranus and Neptune with four layers: 1) hydrogen and
helium, 2) H2O and hydrogen, 3) carbon-nitrogen-hydrogen mixture and 4) the rocky core composed of iron
and rock. m specifies the fractional layer masses. The temperatures for B and C type models are printed
without and with parenthesis. The dashed lines in the second layer mark the conditions for the transition
from liquid to superionic in pure H2O.

at the bottom. H2,3 = NH/(4NC + 3NN) are defined in terms of the number of carbon and nitrogen
atoms in the mixture, NC and NN .
To reduce the discretization error, we slightly adjust the grid of the equatorial spheroid radii so

that every layer boundary coincides with a grid point (Militzer 2024a). We compared results of
CMS calculations with 256 and 512 spheroids and found that the change in the predicted gravity
coefficients is small. (Bailey & Stevenson (2021) employed only NS = 30 spheroids for their Uranus
and Neptune models.) Scaling the radii r1, r2, and r3 enables us derive a valid interior model of the
expected mass even in situations where one of these three layers is rather small. This also means
that we have removed one dimension from our Markov chain Monte Carlo (MCMC) calculations
(Militzer 2023a, 2025b) and now have five independent parameters, r2/r1, r3/r1, H1, H2, and H3

that are constrained to satisfy 1 ≤ r2/r1 ≤ r3/r1 ≤ 0 and H2 > H3. The MC algorithm is designed
to generate ensembles of models by sampling from the probability density, exp(−χ2/2), where χ2

represents the deviation in the gravity coefficients between the observations and model predictions
that were computed with Eq. 6,

χ2 =
2∑

n=1

(
Jmodel
2n − Jobs

2n

δJobs
2n

)2

. (7)

δJobs
2n are one sigma error bars.
Step by step the CMS algorithm (Hubbard 2013) converges to a hydrostatic interior structure by

repeatedly looking up information in the ab initio EOS tables. For example, the spheroid shapes
are employed to compute the potential on all spheroid surfaces that represents gravitational and
centrifugal forces. From these potential values, one derives updated values for the pressure on all
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spheroids. For a given layer and composition, one derives the temperature that correspond to a
pressure by assuming an isentrope of known entropy. Then one looks up the corresponding density
in the EOS table for given pressure, temperature, and composition. The updated density profile is
then inserted into the CMS calculation to revise all surface potentials, which enables one to update
the spheroid shapes and pressure values. We typically update the pressure values more frequently
than the spheoriod shapes because it allows us to converge to a self-consistent hydrostatic structure
more efficiently.

3. RESULTS

3.1. Hydrogen-helium layer

Table 1. Relationship of pressure, temperature and density for isentropes of the three giant planets that were

derived with Eq. 2 for hydrogen-helium mixture with plausible helium mass fractions, Y , that are stated in

column 1. Column 5 lists the entropy per particle, N (N = NH2 + NHe for hydrogen molecules and helium

atoms). In column 6, we list the related entropy per electron, S−/el = [S/N ]/2−∆S ×NH2/N . The last three

columns provide the fraction of para hydrogen and the fractional occupation of the first and second vibrational

energy levels, m = 0 and 1.

Planet P [bar] T [K] ρ [g cm−3] S [kB/N] S− [kB/el] fparaH occ m=0 occ m=1

Neptune 1 72.00 0.000391 12.635 5.737 0.5434 1.000 0.000

Y=0.2777 10 145.13 0.001937 12.635 5.737 0.2910 1.000 0.000

100 298.71 0.009414 12.635 5.737 0.2507 1.000 0.000

1000 594.50 0.047299 12.635 5.737 0.2500 1.000 0.000

10000 1166.54 0.241047 12.635 5.737 0.2500 0.994 0.006

Uranus 1 76.00 0.000370 12.834 5.836 0.5128 1.000 0.000

Y=0.2777 10 154.82 0.001816 12.834 5.836 0.2818 1.000 0.000

100 317.18 0.008865 12.834 5.836 0.2505 1.000 0.000

1000 630.75 0.044581 12.834 5.836 0.2500 1.000 0.000

10000 1234.08 0.227855 12.834 5.836 0.2500 0.992 0.008

Jupiter 1 166.10 0.000166 15.346 7.074 0.2736 1.000 0.000

Y=0.238 10 336.96 0.000816 15.346 7.074 0.2503 1.000 0.000

100 665.98 0.004128 15.346 7.074 0.2500 1.000 0.000

1000 1291.94 0.021278 15.346 7.074 0.2500 0.990 0.010

10000 2355.50 0.116708 15.346 7.074 0.2500 0.915 0.077

We begin by discussing the temperature profile of Uranus and Neptune’s outer hydrogen-helium
layer. We assume an isentrope with a protosolar helium fraction of Y=0.2777 and neglect minor
species such as methane. In Fig. 4, we compare the temperature profiles from Eq. 2 with other calcu-
lations. In Tab. 1, we state the anchor points at 1 bar for the isentropes of different planets. For all
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Figure 4. Isentropes of hydrogen-helium mixtures in the outer layers of Jupiter and Neptune. The symbols
at 1 bar mark the anchor points with temperatures of 166.1 and 72 K respectively. The inset shows the
fraction of para hydrogen, which approaches 1/4 in the limits of high temperature.

higher pressures, the density and temperature were adjusted until the target pressure and the entropy
of the anchor point were reproduced. What one might consider to be a complex statistical problem
of atomic physics greatly simplifies under the conditions in the outer envelopes of giant planets where
the temperature is too low for many molecular eigenstates to be occupied. For example, none of the
excited electronic states matter because already the first excited state requires an excitation energy
of 11.4 eV or 132 000 K. Furthermore, the last two columns of Tab. 1 show that only the lowest
vibrational energy is occupied unless the temperature reaches ∼1000 K, at which the occupation
fraction of the vibrational m = 1 state reaches about 0.3%. This bring us to the rotational states,
which require the least excitation energy of ∼170 K. Even for those, the corresponding sum in Eq. 2
converges rapidly. For a temperature of 1000 K, just 12 rotational states are required to compute
the entropy with an accuracy of 10−4 kB/particle. The inset of Fig. 4 shows the fraction of para
hydrogen, which will approach 1 in the limit of low temperature. By 300 K, the para-to-ortho ratio
has already converged its high-temperature limit of 1:3 (fparaH = 1/4). At 1 bar, the para fraction
of Uranus and Neptune’s atmosphere is about 50%, while it is about 27% for Jupiter because its
atmosphere is hotter.
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In Fig. 4, we compare the isentrope predicted by Eq. 2 with results in the literature. For pressures up
to 5 kbar, we find excellent agreement with the work by Saumon & Chabrier (1992) (SC), for which a
code is available that interpolates precomputed tables for temperatures greater than 125 K. To make
such calculations more accessible and to extend them to lower temperatures, we make our source
code available (Militzer 2025a). For pressures exceeding 5 kbar, the interaction between particles
that we have neglected in Eq. 2 start to matter. Saumon & Chabrier (1992) included different types
of interactions into their EOS tables, which reduce the temperature of an isentrope. At a pressure of
100 kbar (10 GPa), their predictions converged to the results from ab initio simulations from Militzer
& Hubbard (2013) (MH13) for Neptune and Jupiter as Fig. 4 shows.
For the comparison between ab initio simulations and analytical methods like Eq. 2 to be meaning-

ful, one needs to agree on a definition for the entropy and both methods need to be able to provide
absolute entropies. The ab initio entropies of MH13 were derived with a TDI method that relied on
classical nuclei and quantum mechanical forces and therefore does not include any spin effects of the
hydrogen nuclei. This is perfectly reasonable at high pressure where the nuclear spin states do not
affect the motion of the atoms. In the weakly coupled regime at low pressure, nuclei spin effects need
to be considered because they affect the rotational states of the hydrogen molecules. The simplest
way to make the ab initio entropies of MH13 compatible with entropies of Eq. 2 and of SC EOS is
to add ∆S = kB ln(2) per hydrogen atom to the MH13 entropies to incorporate the missing nuclear
spin degrees of freedom. If one does not want to alter the MH13 entropies for some reason one may
subtract ∆S per atom from all entropies that were computed with Eq. 2 (see S− in Tab. 1). This
subtraction allows one to compare the entropy values and to align the isentropes in P-T space but
it would not yield a proper thermodynamic entropy because it would approach −∆S in the limit of
low temperature.
Fig. 4 shows that the SC predictions for Jupiter start to deviate from the ab initio simulations above

200 kbar because molecules start to interact strongly and one approaches the regime of pressure driven
molecular dissociation, which SC model interpolates across. More details are provided in Guillot et al.
(2004); Militzer & Hubbard (2007); Militzer et al. (2008).
Fig. 4 also shows that the Neptune model by Nettelmann et al. (2013) predicts temperatures that

are ∼20% lower than other predictions over a wide range of pressure from 10 bar to 20 kbar.

3.2. TDI for liquid water

In Fig. 2, we compare the results from two different TDI calculations for liquid water at 3000 K,
1.75 g cm−3, and 23 GPa. Panel (a) shows that only the O-H potential has an attractive part, which
we have removed when we constructed our set of nonbonding potentials while the O-O and H-H were
the same as in our set of bonding potentials. Panels (b) and (c) demonstrate that TDI simulations
with bonding and nonbonding pair potentials are stable for all λ values. The ensemble generated with
the nonbonding potentials differs more from the DFT ensemble as the inset of panel (d) illustrates.
For the nonbonding potentials the integrand, ⟨UDFT − UPP ⟩λ, has more curvature and the difference
between λ=0 and 1 points is 0.11 Ha/cell while it is only 0.025 Ha/cell for our bonding potentials,
which makes the time consuming evaluation of the first term in Eq. 3 more efficient.
With the bonding potentials, we obtained an entropy of 21.97±0.26 kB/H2O while we derived

22.04±0.30 with the nonbonding potentials. (An error bar of 0.3 kB/H2O translates into a small
temperature uncertainty of only 11 K.) Both results are consistent with each other, which we further
analyze in panel (d) of Fig. 2. On the left side, we compare the two ⟨VPP ⟩λ curves (red and blue
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symbols). They have similar but not identical shapes. The average potential energy, ⟨VPP ⟩λ is higher
for the nonbonding potentials because we shifted UO−H up when we removed the attractive part of
the potential. The integral

∫ 1

0
dλ ⟨VPP ⟩λ (solid blue line) is thus larger than that of the bonding

potential (red solid line). But when we add the integral
∫ 1

0
dλ ⟨VDFT − VPP ⟩λ in the right figure

panel, results with both pair potentials converge to the same value of −0.42 Ha/H2O at λ = 1. This
confirms that one obtains consistent results for different classical potentials, which is one of the main
strength of the TDI method.

3.3. Isentropes of liquid and superionic H2O
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Figure 5. Pressure for isochores of liquid and superionic H2O. The labels specify the density in g cm−3.
The offset between the two families of curves implies a first order phase transition. For given density and
temperature, the pressure of the liquid phase is higher than that of the superionic phase, which implies the
melting line has a positive slope dP/dT > 0. The temperature-pressure profiles of our interior models for
Uranus and Neptune of type B are compared with the much hotter conditions proposed by Redmer et al.
(2011).

In Figs. 5 and 6, we plot the pressure that we derived with our ab initio simulations over a wide
range density and temperature conditions that include the interiors of Uranus, Neptune, and far
beyond as we illustrate in Fig. 1. Our equation of state table is available at Militzer (2025c).
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Figure 6. Pressure of liquid and superionic H2O is plotted as function of density for different temperature
values that are specified on every curve in units of Kelvin. For clarity, we multiplied the pressure by density
to the power of −2/5 because pressure varies strongly with density. Our Uranus model of type B from Fig. 3
is included.

There is an offset in pressure between the liquid and superionic branches as the 2.5 and 2.75
g cm−3 isochores in Fig. 5 illustrate. This implies the melting transition of superionic ice is a first-
order phase transition. It has a positive dT/dP Clapeyron slope because the superionic phase is
denser. This is confirmed by the offset in pressure between the 3000 and 4000 K isotherms in Fig. 6.
A first-order phase transition also implies a discontinuous change in entropy as we illustrate in

Figs. 7 and 8 where we plot ab initio entropies that we derived for both phases. Because oxygen
atoms are more ordered in the superionic structure, this phase has lower entropy, which can be
seen best by following the 2000, 3000, and 4000 K isotherms in Fig. 6. So if a parcel of fluid H2O
transitions into the superionic state, it would release latent heat and its density would decrease.

3.4. Implications for Uranus and Neptune

Figs. 1 and 5 show that our ab initio derived isentropes are much shallower in pressure-temperature
space than those proposed earlier. At any point, their slopes can be expressed in terms of δ = ∂ lnT

∂ lnP
|S

and Grüneisen parameters γG = ∂ lnT
∂ ln ρ

|S. If one considers a pressure or density range, one can

introduce effective values for these coefficients by fitting T ∝ P δ and T ∝ ργG . For an ideal gas
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Figure 7. Entropy of liquid and superionic H2O that we computed for different density values that are
specified in units of g cm−3. For given density and temperature, the entropy of liquid water is higher because
the oxygen nuclei are more disordered. For reference, we mark the conditions of our two interior models of
type B for Uranus and Neptune in Fig. 3.

of nonlinear, triatomic molecules, one obtains δ = 1/4 and γG = 1/3 by assuming the vibrational
degrees of freedom are frozen while the transitional and rotational motion can proceed unhindered,
which is unrealistic for fluids at high pressure where interaction effects are very important.
For Uranus and Neptune conditions, we obtained δ ≈ 0.15 and γG ≈ 0.52 for fluid H2O from

3–20 GPa and δ ≈ 0.24 and γG ≈ 0.73 for superionic H2O from 130–1300 GPa. These values are
much smaller than previous predictions as the slopes of different curves in Fig. 1 illustrate. Hubbard
& MacFarlane (1980) assumed δ ≈ 0.31 and γG ≈ 0.9 for the entire ice layer. Chau et al. (2011)
assumed a similar slope of δ ≈ 0.32. The isentropes by Redmer et al. (2011) are consistent with
a value of δ ≈ 0.28. The adiabat of Nettelmann et al. (2013) can be represented by δ ≈ 0.23 and
γG ≈ 0.63 from 10–60 GPa and by δ ≈ 0.29 and γG ≈ 0.82 from 100–590 GPa.
To understand the likely implications of these shallower slopes for the interiors for Uranus and

Neptune we need to introduce additional approximations because their mantles are in all likelihood
not composed of pure water (Podolak et al. 1995). So we adopted the interior models from Militzer
(2024a) in Fig. 3 and employed our H2O isentropes to approximately present the temperature profiles
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Figure 8. Entropy of liquid and superionic H2O from Fig. 7 for different temperatures are plotted as
function of density. For a given temperature, the liquid and superionic curves are offset because the oxygen
nuclei are more disordered in the liquid phase. The conditions of our two interior models of type B for
Uranus and Neptune in Fig. 3 are included.

of the outer water-hydrogen layer and of inner carbon-nitrogen-hydrogen layer. Even though our ab
initio derived adiabats are colder than previously assumed, we had no difficulties constructing models
that match the observed gravity fields of Uranus and Neptune. Two interior models are illustrated
in Figs. 1 and 3. The corresponding data files are available at Militzer (2025c).
To characterize the plausible range of model parameters, we constructed ensembles of interior

models with our MCMC methods (Militzer 2023b, 2024b). In Figs. 9, 10, and 11, we show the
resulting posterior distributions for Uranus and Neptune models that we constructed with the CMS
method. The single flyby of the Voyager 2 spacecraft did not constrain the gravity field of Neptune
as well as that of Uranus. The resulting distributions of the gravity harmonics Jn in Fig. 9 are thus
much wider for Neptune. These coefficients describe a planet’s response to rotation. For nonrotating
planets in hydrostatic equilibrium, all Jn>0 would be zero. In the histograms, the J2n distributions
of both planets overlap but in the J2n − J2m correlation plots, the Neptune models tend to show
larger J2m value, which is not too surprising because as Neptune rotates a bit faster than Uranus.
The signs of the J2n alternate with increasing n, which is simply a consequence of how the Legendre
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Figure 9. Posterior distributions of gravity harmonics, Jn, that we derived with MCMC calculations of the
interiors of Uranus (blue) and Neptune (red). We show correlation plots and histograms. For the latter we
chose a logarithmic Y axis to accommodate a wide range of probability densities. The panels were ordered so
that some X axes align vertically. No dynamic contributions from winds were considered in the calculation
of the Jn. Predictions for Neptune vary much more because the planet’s gravity field has been measured
less accurately.

polynomials are defined. If one studies just the magnitudes of the J2n, one finds that they are
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Figure 10. Posterior distributions of layer masses, boundary pressures and temperatures. M0, M1, M2,
and M3 refer to the fractional masses of the four interior layers in Fig. 3: 1) H-He, 2) H2O rich, 3) C-N-H
and 4) the rocky core. P1 in units of GPa and T1 in K refer to the conditions of boundary between layers
1 and 2. Similarly, Pi>1 and Ti>1 characterize the boundaries between deeper layers in Fig. 3. Finally
PC refers to the pressure at the planet’s very center. The blue and red points respectively represent CMS
ensembles of Neptune that we constructed with our temperature-pressure profile of type B and the hotter
profile that was proposed by Redmer et al. (2011) that we show in Fig. 1. Conversely the black and orange
symbols shows ensembles of Uranus models with our type B and Redmer et al. (2011) temperature profiles.
Our temperatures are much lower than that by Redmer et al. (2011), which affects many other planetary
properties.
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all positively correlated with each other in Figs. 9. So if according to one model in the MCMC
ensemble, the mass distribution inside a planet responds a bit more strongly to the centrifugal forces,
the magnitude of all J2n increases slightly, which explains their pairwise positive correlation.
For all of our models, we assume Uranus and Neptune cool convectively and their interior tempera-

ture profiles can be represented by different isentropes. One still has to make additional assumptions
for the first-order transition from liquid to superionic water that is associated with a discontinuous
change in density and entropy as we discussed in the previous section. If one assumes that this
transition introduces a barrier to convection then one would treat it like the boundary between the
hydrogen-helium and the ocean layers where one assumes common values for pressure and temper-
ature at the interface but then choose a different value of the entropy in both layers. The results
are continuous pressure-temperature profiles as we illustrate in Fig. 3. By assuming a continuous
pressure-temperature profile, Redmer et al. (2011) and Nettelmann et al. (2013) have implicitly as-
sumed that the transition to superionic water introduces a convective barrier. It is therefore useful
discuss with such type of models. We refer to them as type “B” models.
In Fig. 10, we compare the fractional layer masses and pressure and temperatures at layer bound-

aries for different ensembles of B-type models illustrated in Fig. 3. The blue and red points respec-
tively show models for Neptune that we derived with our interior temperature profiles and those
proposed by Redmer et al. (2011) (R11). We compare with these profiles because they are still refer-
enced by experimentalists (Prakapenka et al. 2021). All results were obtained with the CMS method
under consistent assumptions. The black and orange dots display results for Uranus with our and
with R11’s temperature profile. Most interesting are panels in Fig. 10 where all four distributions
differ. An example is the correlation between the temperatures T1 and T2, temperatures at the top
and bottom of the ocean layer. The four distributions vary because the planet observations and the
assumed isentropes differ. For our B-type models, we predict the average values of T1 and T2 to be
1520 and 3000 K for Neptune and 1890 and 3370 K for Uranus. If we construct models under the
same assumptions but adopt R11’s temperature profiles, we obtain 1560 and 4520 K for Neptune’s
T1 and T2 and 1910 and 4510 K for Uranus. The histograms at the bottom of Fig. 10 confirm that
our T2 values for both planets are much lower than the corresponding R11 values while T1 are fairly
similar because they are not affected by our revision of the T -P profile in the ocean layer. The T1

values for Uranus are higher simply because we predict this planet to have a thick H-He layer that
encompasses 4% of the planet’s mass while we predict only 1.5% for Neptune.
For T3, the temperature between the C-N-H layer and the core, we predict an average value of 4360

and 4120 K of Uranus and Neptune. With R11’s T-P profiles, we obtain much higher values of 6040
and 6100 K (also see Fig. 1). In comparison, the value of the corresponding pressure, P3 does not
change much. We predict 620 and 820 GPa for Uranus and Neptune when we adopt our P-T profile
and 630 and 940 GPa for the R11 profile. Similarly our predictions for Neptune’s P2 (pressure at
boundary of ocean and C-N-H layer) is lower (average of 200 GPa) than values obtained with R11’s
temperature profile (300 GPa). In general, Neptune’s values are larger because it is a bigger planet
with a bigger core. For Neptune, we predict core mass fraction of about 6.4% (1.1 Earth masses) and
a central pressure of 1300 GPa while we predict a much smaller core or even no core for Uranus. The
average core mass fraction in our ensembles was only 0.17% and the central pressure was 650 GPa.
The M1-M2 panel of Fig. 10 shows that both mass fraction are strongly anticorrelated because

their densities are not very different (see Fig. 12) and one can thus move their boundary up or down
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without drastically changing the gravity field. For our P-T profile we predict the ocean and C-N-H
layers to encompass 57 and 39% of Uranus and each 46% of Neptune.
A number of planels in Fig. 10 show very strong correlations. For example T1 and P1 correlated

because they are both functions of the mass of the H-He layer (M0) and the outer adiabats are
anchored at their respective 1 bar temperatures of 72 or 76 K. Similarly one finds that T2 and P2 are
positively correlated with each other and with the mass of the ocean layer, M1. Not surprisingly, one
finds the central pressure of both planets to correlate with their core masses. One may also increase
the core mass by lowering the core transition pressure, P3, which explain why both quantities are
anticorrelated.
Convection in the presence of phase transitions has been discussed in context of geophysics because

different mantle minerals undergo exothermic and endothermic phase transitions in the Earth’s man-
tle. With increasing pressure or depth, the liquid-to-superionic transition of water is similar to the
exothermic transition of olivine to spinel that was analyzed by Schubert et al. (1975). When a cold
slab descends, olivine, the lower-pressure phase, transforms into spinel, a higher-pressure polymorph.
As its phase changes, it releases latent heat and its density decreases. Schubert et al. (1975) dis-
cussed two competing effects. First they argued that the release of latent heat would increase the
local temperature, which would lower the material’s density and introduce a buoyancy force that
would counteract the convecting forces. Second they pointed out that a descending slab must have
a temperature that is slightly lower than that of its surrounding, which means it would encounter
the olivine-to-spinel transition at slightly lower pressures because the phase transition has a positive
Clapeyron slope. Therefore it would transition to the higher-density spinel phase at a slightly shal-
lower depth. There its density would be higher than that of its surrounding, which would promote
the convection across the phase boundary.
Christensen (1995) analyzed the magnitude of the two effects and concluded that for Rayleigh

convection in Earth’s mantle, the second effect dominates over the first and that exothermic phase
transitions enhance convection in general. If one adopts this picture for the convection of H2O in
the Uranus and Neptune then one is forced to represent the liquid and superionic portions of their
mantles by two curves that have a same entropy. This would lead to an offset in pressure-temperature
space at the melting line of superionic H2O, which we illustrate with our models of type “C” in Figs. 1
and 3. In the gap between liquid and superionic branches, the isentrope would follow the melting
line. In the planet, one would then assume there exists a transition zone or a mixed region where
the fraction of superionic H2O increases gradually with depth. If a cold downwelling arrived at this
transition zone, it would change to superionic H2O at slightly lower pressures, therefore become a bit
denser than its surrounding, and so continue to descend. The release of latent heat would increase the
temperature while the entropy remains constant because heat diffusion into the environment remains
to be too slow. By similar arguments, an upwelling of hotter material would also pass through the
transition zone.
In Fig. 11 we compare ensembles of models for Neptune that have constructed by assuming a single

entropy value but two separate isentrope branches for the liquid and superionic phases. As expected
one observes an increase in the temperatures at the water-to-CNH layer, T2, of about 300 K (3400
instead of 3100 K) and at the CNH-core boundary, T3 of about 500 K (4750 instead of 4250 K).
Both results are much colder than values of T2=4500 and T3=6100 K that one would predict if one
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Figure 11. Like in Fig. 10, we show a posterior MCMC distribution but here we have reduced the number
of variables and compare three distributions for Neptune: Red color represents models with the hotter
temperature profile proposed by Redmer et al. (2011). Models of type B with a lower temperature profile
that assume a convective barrier are shown in blue. The orange results represent our C type models with
intermediate temperatures that assume convection occurs across the superionic-liquid boundary.

adopted the temperature profile that was proposed by Redmer et al. (2011). With this profile one
predicts smaller cores (M3), less massive CNH layers (M2) but thicker water layers (M1).
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In Fig. 11 also shows that for B and C type models, the most likely values layer masses M1, M2,
and M3 and boundary pressures P2 and P3 are very similar but the distribution of C type models
includes more massive cores that are accommodated by smaller P2 and P3 values. At the present
time, we have no information to determine whether B and C type models more likely represent the
interiors of Uranus and Neptune, so we recommend treating them as equally probable.
In Fig. 12, we show the radial profiles of density, temperature and pressure for the presentative

models in Fig. 3. Because Neptune has a larger core than Uranus, the pressure and density in its
center are higher. As expected, the temperature of our C-type models with a bit higher than that
of our B-type models but their density and pressure profiles are rather similar. The temperature in
a Neptune model by Nettelmann et al. (2013) are significantly higher than ours, which explains why
they predicted a larger core for Neptune and the density in their water layer is comparable to that
in our water-hydrogen layer.

4. CONCLUSIONS

We performed ab initio computer simulations of liquid and superionic H2O for conditions of high
pressure and temperature in the interiors of Uranus and Neptune. We derived the free energies
by employing thermodynamic integration methods, which gave us a direct access to the ab initio
entropies. This enabled us to compute isentropes and to construct models for the interiors of Uranus
and Neptune. We put together two types of models assuming that convection may or may not reach
across the transition between liquid and superionic water.
We propose a revision for the interior temperature profiles of Uranus and Neptune, as for both

types of models we predict their deep interiors to be much colder (∼4300 or ∼4800) than earlier
models by Redmer et al. (2011) and Nettelmann et al. (2013) (∼6000 K) who did not have access to
entropies that were computed with ab initio simulations. Models by Hubbard & MacFarlane (1980),
Chau et al. (2011), and by Neuenschwander et al. (2024) had predicted even higher temperatures
for the interiors of Uranus and Neptune, so consequently our temperatures deviate from them even
more.
Our predictions for lower temperatures in Uranus and Neptune have a number of likely conse-

quences. They make it much more likely for diamonds to form (Ross 1981) or for the phase separation
of planetary ices (Militzer 2024a) to have occurred in these planets. Future compression experiments
such as these performed by Chau et al. (2011), Kraus et al. (2017), and Frost et al. (2024) may be
designed to target a lower temperature range. This means there is a smaller temperature differential
between the atmosphere and deep interiors, which implies that there is less energy available to drive
thermal convection and to generate magnetic fields today. It also means that Uranus and Neptune
have radiated more thermal energy into space since their formation, which evolution models will need
to take into account when they target today’s interior state that is now substantially colder than was
previously predicted.
Based on results from our ab initio simulations, we constructed static models for the interior

structure of Uranus and Neptune with the Concentric MacLaurin Spheroid method. Neptune is
that predicted to have a rocky core that comprised approximately one Earth mass while Uranus is
predicted to have a smaller rocky core or no core at all.
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Figure 12. Radial profiles of temperature, density, and pressure from our models in Fig. 3. For comparison,
we show a model by Nettelmann et al. (2013) that proposed a much hotter interior and a larger core for
Neptune.
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