Quadratic Monte Carlo to Understand Jupiter’s Interior Structure and the Origin of Saturn’s Ring

B. Militzer, W. B. Hubbard, J. Wisdom, R. Dbouk, F. Nimmo, B. Downey, R. French
Big Questions that my Group Helps Address

1. How did our solar system form?
2. What are giant planets made of?
3. How do material behave at high pressure?
1. Juno mission and Jupiter’s **Dilute Core**
2. How did Saturn become the **Lord of the Rings**?
3. **Quadratic Monte Carlo** – a general-purpose sampling method
1. Juno Mission and Dilute Core
2. How did Saturn become the Lord of the Rings?
What is so Unusual About Planet Saturn?
3. Quadratic Monte Carlo Method
Apply our QMC method Dilute Core Models

\[\text{Probability} \sim \exp\left\{-\frac{\chi^2}{2}\right\} \]

\[\chi^2 = \sum_n \left(\frac{J_n^{\text{uno}} - J_n^{\text{model}}}{\delta J_n^{\text{uno}}} \right)^2 \]
Apply our QMC method Dilute Core Models
Affine Invariance MCMC by Goodman & Weare

Affine Stretch move

\[g(z) \propto \begin{cases} \frac{1}{\sqrt{z}} & \text{if } z \in \left[\frac{1}{a}, a \right], \\ 0 & \text{otherwise.} \end{cases} \]

Ensemble of walkers employed to collect information about fitness landscape.

Quadratic move
Our Quadratic Monte Carlo Method Explained at
http://militzer.berkeley.edu/QMC

Array1 <S> s = SetUpNStates(nWalkers); // Set up nWalkers different states of type S
for(int iBlock=0; i<nBlocks; iBlock++) {
 // loop over blocks
 for(int iStep=0; i<nStepsPerBlock; iStep++) { // loop over steps
 for(int i=0; i<nWalkers; i++) { // try moving every walker once per step
 int j,k;
 SelectTwoOtherWalkersAtRandom(i,j,k);
 const double tj = -1.0;
 const double tk = +1.0;
 const double ti = SampleT(a); // sample t space
 const double tNew = SampleT(a); // sample t space one more time
 const double wi = LagrangeInterpolation(tNew,ti,tj,tk);
 const double wj = LagrangeInterpolation(tNew,ti,tk,tj);
 const double wk = LagrangeInterpolation(tNew,tk,ti,tj);
 S sNew = s[0]; // Create new state by coping over an existing one.
 for(int d=0; d<nDim; d++) {
 sNew[d] = wi*s[i][d] + wj*s[j][d] + wk*s[k][d]; // set nDim parameters of new state
 }
 if (sNew.Valid()) { // check if state sNew is valid before calling Evaluate()
 sNew.Evaluate(); // Sets the energy sNew.y which defines the state's probability = exp(-y/temp)
 double dy = sNew.y - s[i].y; // difference in energy between new and old state
 double prob = pow(fabs(wi),nDim) * exp(-dy/temp); // Note |wi|^nDim and Boltzmann factors
 bool accept = (prob>Random());
 if (accept) {
 for(int d=0; d<nDim; d++) {
 s[i][d] = sNew[d]; // copy over state sNew
 }
 s[i].y = sNew.y; // copy also its energy
 }
 }
 } // look over all walkers
 ComputeDifferentEnsembleAverages(s);
 } // end of loop over steps
} // end of loop over blocks
PrintEndOfBlockStatement();
PrintEndOfRunStatement();

New lines

Prefactor requires discussion
Sampling Details and Prefactors

Affine moves, type 1
\[
\tilde{r}_i' = \tilde{r}_j + \lambda (\tilde{r}_i - \tilde{r}_j)
\]

\[
T_1(\lambda) = \frac{1}{\lambda} T_1\left(\frac{1}{\lambda}\right)
\]

\[T_1(\lambda) \propto \frac{1}{\sqrt{\lambda}} \text{ if } \lambda \in \left[\frac{1}{a}, a\right]\]

\[\alpha = N - 1\]

\[A(\tilde{r}_i \to \tilde{r}_i') = \min \left[1, \frac{\pi(\tilde{r}_i')}{\pi(\tilde{r}_i)} \lambda^\alpha \right]\]

Affine moves, type 2
\[
\tilde{r}_i' = \tilde{r}_j + \lambda (\tilde{r}_i - \tilde{r}_j)
\]

\[T_2(\lambda) = \frac{a}{a^2 - 1} = \text{const}\]

\[\alpha = N - 2\]

Quadratic moves
\[
\tilde{r}_i' = w_i \tilde{r}_i + w_j \tilde{r}_j + w_k \tilde{r}_k
\]

\[w_i = L(t_i'; t_i, t_j, t_k),\]
\[w_j = L(t_j'; t_j, t_k, t_i),\]
\[w_k = L(t_k'; t_k, t_i, t_j),\]
\[L(x; x_0, x_1, x_2) \equiv \frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2}\]

\[t_i \text{ and } t_i' \text{ from the same distribution } \mathcal{P}(t)\]

\[A(\tilde{r}_i \to \tilde{r}_i') = \min \left[1, \frac{\pi(\tilde{r}_i')}{\pi(\tilde{r}_i)} |w_i|^N \right]\]

BM, Astrophys. J. 953 (2023) 111
In Our Derivation of Prefactors, we follow Green and Mira

Regular detailed balance between two states \(\pi(\vec{r}) P(\vec{r} \to \vec{r}') = \pi(\vec{r}') P(\vec{r} \to \vec{r}') \)

Green & Mira (2001) who formulated a generatized condition

\[
\int \pi(d\vec{r}) P(\vec{r} \to d\vec{r}') = \int \pi(d\vec{r}') P(\vec{r}' \to d\vec{r})
\]

The notation \(\int \pi(d\vec{r}) \) refers to the integral,

\[
\int \ldots \pi(d\vec{r}) \equiv \int \ldots p(\vec{r})d\vec{r}
\]

Green & Mira (2001) showed that the acceptance probability for a move from \(\vec{r} \) to \(\vec{r}' \) is given by,

\[
A(\vec{r} \to \vec{r}') = \min \left\{ 1, \frac{\pi(\vec{r}') T'(\vec{\lambda}')}{\pi(\vec{r}) T(\vec{\lambda})} \left| \frac{\partial(\vec{r}', \vec{\lambda}')}{\partial(\vec{r}, \vec{\lambda})} \right| \right\}
\]

(A4)

Jacobian determinant for the transformation from \((\vec{r}, \vec{\lambda})\) to \((\vec{r}', \vec{\lambda}')\)
In Our Derivation of Prefactors, we follow Green and Mira

\[
\frac{\partial \lambda'_1}{\partial \lambda_1} = 0 \quad , \quad \frac{\partial \lambda'_2}{\partial \lambda_2} = 0 \quad , \quad \frac{\partial \lambda'_1}{\partial \lambda_2} = 1 \quad \text{and} \quad \frac{\partial \lambda'_2}{\partial \lambda_1} = 1
\]

The Jacobian becomes a \((N + 2, N + 2)\) matrix:

\[
J = \frac{\partial (\vec{r}'_i, \lambda'_1, \lambda'_2)}{\partial (\vec{r}_i, \lambda_1, \lambda_2)} = \begin{pmatrix}
\frac{\partial r'_{ib}}{\partial r_{ia}} & \frac{\partial r'_{ib}}{\partial \lambda_1} & \frac{\partial r'_{ib}}{\partial \lambda_2} \\
\frac{\partial r'_{ia}}{\partial \lambda_1} & \frac{\partial \lambda'_1}{\partial \lambda_1} & \frac{\partial \lambda'_1}{\partial \lambda_2} \\
\frac{\partial r'_{ia}}{\partial \lambda_2} & \frac{\partial \lambda'_2}{\partial \lambda_1} & \frac{\partial \lambda'_2}{\partial \lambda_2} \\
\end{pmatrix}
\]

and its determinant is given by a sum over permutations, \(\sigma_k\),

\[
|J| = \sum_{\sigma_1 \cdots \sigma_N} \prod_{k=1}^{N} \frac{\partial r'_{i,\sigma_k}}{\partial \lambda_2} \frac{\partial \lambda_2}{\partial r_{i,k}} + \prod_{k=1}^{N} \frac{\partial r'_{i,\sigma_k}}{\partial \lambda_1} \frac{\partial \lambda_1}{\partial r_{i,k}} - \prod_{k=1}^{N} w_i \delta_{k,\sigma_k} = \sum_{\sigma_1 \cdots \sigma_N} \prod_{k=1}^{N} w_i \delta_{k,\sigma_k} = w_i^N
\]
Our Quadratic Monte Carlo is more Efficient Than The Affine Invariant Sampler (emcee) that Moves Linearly

B. Militzer,
Astrophysical J. 953 (2023) 111

Open QMC source code
10.5281/zenodo.8038144
Our Test Case: A Ring Potential

Test case: Ring potential

\[V(\mathbf{r}) = (2m)^2 \left[(\rho - R)^2 \sum_{i=3}^{N} r_i^{2m} \right] - C r_1 \]
Two Performance Criteria: Autocorrelation & Travel Time

- Quadratic moves yield smaller error bars and shorter travel times.
- But don’t use too many walkers.
- We suggest $N_W=2D...3D$
Comparison: QMC vs Affine Invariant Method

Test case:
Ring potential in 18 dimensions

QMC moves are about four times as efficient

For tests in higher dimension, see: BM, Astrophys. J 953 (2023) 111
Comparison: QMC vs Affine Invariance Method

Test case:
Ring potential in 18 dimensions

- Affine invariant moves
- Original walk moves
- New quadratic moves (QMC)
Our Modified Walk moves

Test case:
Ring potential in 18 dimensions

Modified “walk” moves also perform very well.
Our Modified Walk moves: Just Add a Scaling Factor

We follow Goodman & Weare (2010) in computing the average location all walkers in the subset,

\[
\langle \vec{r} \rangle = \frac{1}{N_S} \sum_{j \in S} \vec{r}_j
\]

but we then modify their formula for computing the step size, \(W \), by introducing a scaling factor \(a \):

\[
W = a \sum_{j \in S} Z_j (\vec{r}_j - \langle \vec{r} \rangle)
\]

\(Z_j \) are univariate standard normal random numbers. By setting \(a = 1 \), one obtains the original walk moves,

Modified “walk” moves also perform very well.
Apply our QMC method Dilute Core Models

Dilute core model $T_{1\text{bar}} = 166.1$ K but EOS change by -3%

Dilute core model $T_{1\text{bar}} = 170$ K

Our five-layer reference model with a dilute core $T_{1\text{bar}} = 166.1$ K
Apply our QMC method Dilute Core Models
How does a 3% density reduction change Z_1?

In which pressure region are the models most sensitive?
Only from $10-100$ GPa = 0.1-1 Mbar.
Not the multi-megabar regime.

A 3% reduction over a “decade” of pressure approximately doubles Z_1
(given the typical assumptions in our dilute core models.)

Paper accepted for publication in ApJ
Conclusions for MC Methods

1. **Quadratic Monte Carlo** – a general-purpose sampling method
2. We recommend using a *modest number of walkers* only, between $2 \times D$ and $3 \times D$
3. We modified the walk moves by adding a scaling factor. There is **no universal scaling factor** that works for all applications.