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Abstract

We study the response of hot Jupiters to a static tidal perturbation using the concentric MacLaurin spheroid
method. For strongly irradiated planets, we first performed radiative transfer calculations to relate the planet’s
equilibrium temperature, T, to its interior entropy. We then determined the gravity harmonics, shape, moment of
inertia, and static Love numbers for a range of two-layer interior models that assume a rocky core plus a
homogeneous and isentropic envelope composed of hydrogen, helium, and heavier elements. We identify general
trends and then study HAT-P-13b, the WASP planets 4b, 12b, 18b, 103b, and 121b, and Kepler-75b and CoRot-
3b. We compute the Love numbers, k,,,, and transit radius correction, AR, which we compare with predictions in
the literature. We find that the Love number, k,,, of tidally locked giant planets cannot exceed a value of 0.6, and
that the high T, consistent with strongly irradiated hot Jupiters tends to further lower k,,. While most tidally
locked planets are well described by a linear regime response of ky, = 3J,/qo (Where qq is the rotation parameter of
the gravitational potential), for extreme cases such as WASP-12b, WASP-103b, and WASP-121b, nonlinear
effects can account for over 10% of the predicted k,,. The k,, values larger than 0.6, as they have been reported for
planets WASP-4b and HAT-P13B, cannot result from a static tidal response without extremely rapid rotation and
thus are inconsistent with their expected tidally locked state.



Two types of tidal interactions of giant planets

Planet interacts with orbiting satellites that may Exoplanet is tidally locked to host star which
introduce dynamic tidal effects. acts as tidal perturber. Rotation is thus slow.
» Static tidal calculation k»,=0.590 (Wahl 2020)  Planet changes shape. Apparent radius
* Juno mission k,,=0.565 + 0.006 reduced by up to 4%.
« |dini (2021): Coriolis acceleration Ak, = —4% + Planet’s gravity field changes. (other planets)
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Interior Models of Strongly Irradiated Giant

Exoplanets Constructed with CMS Method

+ We first performed radiative
transfer calculations to relate the
planet’s equilibrium temperature,
Teq, to its interior entropy.

(Thorngren & Fortney, 2018, AJ, 155,
214)

+ Planets tidally locked to host star.
Rotation is thus slow.
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Planets tidally locked to host star.
Rotation is thus slow.

Constructed Interior models with
homogenous envelopes with CMS.

Match mass and radius under two
assumptions

* a) No corg, all Z in envelope
* b) Maximal core, no Z in envelope
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Interior Models of Strongly Irradiated Giant

Exoplanets Constructed with CMS Method
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« k,, is sensitive to planet mass and
entropy

« Only if both are kept fixed, a simple
correlation between k,, and core
mass fraction emerges that has
been cited as a way to infer the
core mass of exoplanets (Batygin
2006, Ragozzine & Wolf 2009)
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+ Regime of rapid rotation: k,, varies nonlinearly.

A) Nonlinear Regime of Rapid Rotation

B) Linear Regime of Slow Rotation
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Observations predict a large range of k,,values
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Interior models predict k,, < 0.6.

So all observations with large k,, cannot be matched.
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Why does k,, depend on core mass fraction?

Definition
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Conclusion

| B I « All existing measurements/predictions
1.6— — . o . .
i wasp-ab l with k»,>0.6 are unrealistic. Density
L e N changes too much throughout a giant
12k - planet’s interior.
LA 1
g 1.0 . . + Observations need to be reinterpreted.
50_8_ s i . i Bouma (2020) attributes TTV to an
Jupiter A .
e o - I unseen companion of WASP-4B.
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