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Abstract

Path integral Monte Carlo simulations are applied to study dense atomic hydrogen in
the regime where the protons form a Wigner crystal. The interaction of the protons
with the degenerate electron gas is modeled by Thomas-Fermi screening, which leads
to a Yukawa potential for the proton-proton interaction. A numerical technique for
the derivation of the corresponding action of the paths is described. For one density
of rs = 200 (ρ =2,100 g cm−3 for hydrogen), the melting properties are studied using
the Lindemann ratio, the structure factor, and free energy calculations. Anharmonic
effects in the crystal vibrations are analyzed.
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1 Introduction

Recent advances in high pressure experiments and computer simulation tech-
niques have led to substantial progress in our understanding of the melting
properties of solid hydrogen at high pressure. Using diamond anvil cell exper-
iments, E. Gregoryanz et al. [1] extended the experimental determination of
the melting line from 15 GPa [2] to 40 GPa. Bonev et al. [4] combined the
two-phase melting technique with ab initio simulations [3] and predicted that
there is a maximum in the melting temperature around 80 GPa. At these pres-
sures, hydrogen is still in molecular form. The question of interest is whether
the melting temperature keeps decreasing as the pressure is increased further,
or if another phase appears and the melting temperature again increases.
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From theoretical arguments, we know that atomic hydrogen eventually trans-
forms into a Wigner crystal where the protons form a body centered cubic
(b.c.c.) lattice. The focus of this work is to characterize the Wigner crystal
regime more accurately and to determine the quantum effects on its melting
line. We begin our study with the regime where Jones and Ceperley [5] pre-
dicted a maximum on the melting curve of the Wigner crystal, and further
focus on one density of rs = 200. The corresponding pressure in hydrogen
reaches many peta pascals, which is eight orders of magnitude higher than the
giga pascal pressures common in the molecular phase.

In this article, we study the Wigner crystal of protons using path integral
Monte Carlo (PIMC). This technique allows us to characterize the quantum
effects of the protons. The anharmonic effects in the lattice vibrations are
also included accurately. At much higher temperature and lower density, one
can describe the electrons from first principles [6]. For this work, we instead
approximate the electron-proton interaction using Thomas-Fermi theory. This
leads to an effective Yukawa potential for the proton-proton interaction,

VY (r) =
e2

r
e−r/Ds , (1)

where the screening length Ds is given by [7],

Ds =
(

π

12

)1/3 (

rs

a0

)1/2

a0 , (2)

and rs is the Wigner-Seitz radius, 4
3
πr3

s = V/N . Throughout this work, we
will use units of nuclear Bohr radii, a0 = 4πǫ0~

2/mpe
2 = 2.9×10−14 m, and

nuclear Hartrees, Ha = e2/(4πǫ0a0) = 8.0×10−15 J = 5.8×108 K kb, which are
a factor by mp/me = 1836 less, or greater respectively, than the usual atomic
units.

Jones and Ceperley [5] used PIMC to study quantum melting in Coulomb sys-
tems where the electrons were assumed to form a rigid background. We extend
their work by introducing the Yukawa potential, in order to understand how
the electronic screening affects the stability of the Wigner crystal. Ceperley
and coworkers have used this potential to study the ground state of interacting
fermions [8] and bosons [9] as an model system representing neutron matter.
For those applications the screening length is much shorter and the Ewald
break-up of the potential discussed in the following section can be avoided.
Mon et al. [10] also used effective pair potentials derived from linear response
theory to study the solid and liquid groundstate energies of dense hydrogen.
There it was argued that the proton pair potential can be approximated well
by a Yukawa potential for densities higher than rs ≤ 2500.
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2 Path integral Monte Carlo

The thermodynamic properties of a many-body quantum system at finite tem-
perature can be computed by averaging over the density matrix, ρ̂ = e−βĤ , β =
1/kbT . The path integral formalism [11] is based on the identity,

ρ̂ ≡ e−βĤ =
[

e−
β

M
Ĥ

]M
, (3)

where M is a positive integer. Insertion of complete sets of states between the
M factors leads to the usual imaginary time path integral formulation, written
here in real space,

ρ(R,R′; β) =
∫

. . .
∫

dR1 . . . dRM−1 ρ(R,R1; τ) . . . ρ(RM−1,R
′; τ) , (4)

where τ = β/M is the time step, and R is a collective coordinate including all
particles, R = {r1, . . . , rN}. Each of the M steps in the path now has a high
temperature density matrix ρ(Rk,Rk+1; τ) associated with it. The integrals
are evaluated by Monte Carlo methods. For the densities under consideration,
we can neglect exchange effects of the protons and represent them by dis-
tinguishable particles. Given these constraints, PIMC is an exact technique
and free of uncontrolled approximations (assuming the Yukawa potential is
valid). This technique includes the correct phonon excitations in the presence
of anharmonic effects, which we will discuss later.

2.1 Action for an Isolated Pair of Particles

The action plays a central role in PIMC, since it determines the weights of
paths. We will describe a novel approach for its derivation, which we found
to be more accurate for Yukawa systems than previous techniques. First we
discuss the action for an isolated pair of particles, and then we introduce
periodic boundary conditions commonly used in many-body simulations.

Typically, one approximates the high-temperature many-body density matrix,
ρ(R,R′; τ), as a product of exact pair density matrices which can be motivated
using the Feynman-Kac (FK) formula,

ρ(R,R′; τ)

ρ0(R,R′; τ)
=

〈

e−
∫ τ

0
dt

∑

i<j
VY (rij)

〉

R→R′

=

〈

∏

i<j

e−
∫ τ

0
dtVY (rij)

〉

R→R′

(5)

≈
∏

i<j

〈

e−
∫ τ

0
dtVY (rij)

〉

rij→r′
ij

≡ e
−

∑

i<j
UY (rij ,r′

ij
;τ)

, (6)

3



where ρ0(R,R′; τ) is the free particle density matrix. UY (rij, r
′
ij; τ) is the pair

action corresponding to all paths separated by rij at imaginary time t = 0 and
by r′ij at t = τ . An approximation is introduced when one makes the assump-
tion that the different pair interactions can be averaged by independent Brow-
nian random walks, denoted by brackets 〈. . .〉. The pair action approximation
is exact for the two particle problem. However, higher-order correlations are
left out, which must be recovered in the many-body PIMC simulations using
a sufficiently small time step τ .

The pair action, UY , can be computed by three different methods. 1) For cer-
tain potentials where the eigenstates are known in analytical form, e.g. for the
Coulomb potential, the action can be derived from the sum of eigenstates [12].
However to our knowledge, for the Yukawa potential they are not known ana-
lytically. 2) In the matrix squaring technique [13], one represents the density
matrix on a grid and successively lowers the temperature by performing a one-
step path integration. This method can be applied to arbitrary potentials. 3)
For the Yukawa potential, we found it advantageous to use the FK formula
to derive the pair action. Computationally, it is a bit more expansive than
matrix squaring but it does not introduce grid errors that we found difficult
to control in case of the Yukawa potential. The FK approach is also applicable
to arbitrary potentials unless they exhibit an attractive singularity, which is
discussed further in [14].

In the FK approach, one derives the action UY (r, r′; β) stochastically by gen-
erating an ensemble of random paths according to the free particle action
U0(r, r

′; β) that begin at r and terminate at r′,

e−(UY −U0) =
〈

e−τ/2
∑M

i=1
[VY (ri−1)+VY (ri)]

〉

U0(r,r′;β)
. (7)

The free-particle paths can be generated by a bisection algorithm [15]. We
found that M = β/τ = 32 time steps was sufficient for the Yukawa potential.

To determine the kinetic energy in simulations, one also needs the derivative
of the action with respect to β [15], which can be evaluated from the same set
of paths like Eq. 7,

∂

∂β
(UY − U0) =

〈

e−
∑

i
τVY (ri)

1

M

M
∑

i=1

[

VY (ri) +
1

2
(ri − rCl

i ) · ∇VY (ri)
]

〉

U0(r,r′;β)

,

where rCl
i represents the classical path between the two end points.

The FK formula yields the action for only one specific pair of r to r′. For the
diagonal action, r = r′, we map out a whole grid of points beginning from
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a small value near the origin to large values (several times the thermal de

Broglie wavelength given by
√

2π~2β/m). Typically, we use a logarithmic grid
with about 500 points. For large r, the action approaches the classical limit
given by the primitive approximation,

UY (r, r′; β) ≈
β

2
[VY (r) + VY (r′)] , (8)

which is shown in Fig. 1.
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Fig. 1. The pair action UY (r, r′ = r; τ), scaled by 1/τ , is compared with the corre-
sponding Yukawa potential as a function path separation, r. The Yukawa screening
length of Ds = 387 represents the electronic screening of the proton interaction in
hydrogen at a density of rs = 200. The action converges to the primitive approxi-
mation, Eq. 8, for large r and small τ . At small r, quantum fluctuations remove the
singularity present in the Yukawa potential and lead to a linear dependence on r,
which is known as the cusp condition.

Statistical uncertainties in the resulting action are intrinsic to the FK ap-
proach. We found that 106 paths yield sufficiently small error bars. However,
any noise in tabulated action values is impractical for the subsequent inter-
polation in PIMC simulations. To eliminate this problem, we use the same
random paths for all grid points in the table. This does not remove the un-
certainty but prevents noise in the tables.

Including off-diagonal density matrix elements in PIMC simulations allows one
to use larger time steps, which makes the simulation more efficient. However,
the off-diagonal terms are more difficult to obtain with the FK approach,
which is one of the limitations of the approach. Here, we only consider the
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leading term in an expansion of the action [15],

UY (r, r′; β) ≈ UY (q, q; β) + s2 ξ(q; β) + . . . , (9)

where q = 1
2
(|r| + |r′|), and s = |r − r′|. It turns out that it is more efficient

to derive ξ from finite differences in s rather than evaluating an analytical
expression. Having completed our derivation for the action of an isolated pair
of particles, we now consider a system with periodic boundary conditions.

2.2 Pair Action in Periodic Boundary Conditions

For the density under consideration, rs = 200, and the corresponding screening
length for hydrogen (Ds = 387.667), classical simulations [16] at finite tem-
perature and groundstate quantum calculations [8] predict that b.c.c. is the
groundstate crystal structure. In our PIMC simulations, we use N = 2 ∗ 53 =
250 particles, which are initially placed on the sites of the b.c.c. lattice. Since
the screening length is comparable in magnitude to the length of the simula-
tion cell, L = 1218.59, long-range effects from periodic image particles are far
from negligible, and significant care must be taken to derive results in the ther-
modynamic limit. In this section we describe how long range interactions can
be treated efficiently in PIMC simulations with periodic boundary conditions.

The consideration of periodic image charges removes the most severe finite
size dependence. We expect the residual finite size error to be fairly small
since we used more particles than in previous Coulomb simulations [17], and
the screening is expected to reduce finite size effects. Based on the finite size
scaling by Jones and Ceperley [17], we estimate the uncertainty of our melting
temperature to be of the order of 2% or less. However, a careful finite size
extrapolation for the Yukawa system remains to be performed but is beyond
the scope of this initial investigation.

The total potential energy for a system of N particles interacting via the
Yukawa potential VY (r) is given by [18],

V =
∑

i>j

∑

L

VY (rij + L) +
1

2

∑

i

∑

L 6=0

VY (L) , (10)

where rij = ri − rj , and L is a lattice vector. Instead of representing long-
range terms, VP (r) =

∑

L VY (r+L), on a 3D table [16], we adopt the optimized
Ewald technique [19] by Natoli and Ceperley [20] and express the potential as
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a sum of one real-space image, W (|r|), and a number of Fourier components,

VP (r) ≡
∑

L

VY (r + L) ≈ W (|r|) +
∑

|k|≤kc

yke
+ikr. (11)

Following Natoli and Ceperley [20], we express W as a linear combination of
fifth-order polynomials, W (|r|) =

∑

n anfn(|r|), which is known as a locally
piecewise-quintic Hermite interpolant. The fit coefficients an and yk can be
derived by minimizing the χ2 deviation,

χ2 =
1

Ω

∫

Ω

d3r



VP (r) −
∑

n

anfn(|r|) −
∑

|k|≤kc

yke
+ikr





2

, (12)

where Ω = L3 is the volume of the unit cell. For the Fourier coefficients this
directly yields,

yk = vk −
∑

n

anfnk , with vk =
1

Ω

∫

Ω

d3rVP (r)e−ikr , (13)

where vk and fnk are the corresponding Fourier transforms. Deviating from [20],
we derive the coefficients an from the following set of linear equations, m =
{1, . . . , n},



vm −
∑

|k|≤kc

vkfmk



 =
∑

n

an



fnm −
∑

|k|≤kc

fnkfmk



 . (14)

vm and fnm are overlap integrals, fnm = 1
Ω

∫

Ω d3rfn(r)fm(r), and

vm =
1

Ω

∫

Ω

d3r VP (r) fm(|r|) =
1

Ω

∑

L

∫

Ω

d3r VY (r) fm(|r|) (15)

=
4π

Ω

∫

dr r2 VY (r)fm(r) +
∑

L 6=0

2π

ΩL

∫

dr r fm(r)

L+r
∫

L−r

dq q VY (q) . (16)

In the last expression, one must sum over a sufficiently large number of im-
ages until the interaction is completely screened, |L| ≫ Ds. Computing the
coefficients an using the real-space integration in Eq. 16 is more efficient and
accurate than the Fourier integration employed in [20]. Our approach also
works well for the Coulomb problem, which was the motivation for the [20]
work. In this case, the Ewald potential replaces VP in Eq. 12.

7



This optimized Ewald approach provides us with an accurate representation
of the periodic functions leading to efficient many-body simulations. We apply
it to the Yukawa potential, VY , to the corresponding pair action, UY , and also
to the kinetic energy term,

(

dUY

dβ
− VY

)

, unless it is very small for r ≥ L/2.
Typically, we use between 10 and 20 shells of k vectors.

3 Results
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Fig. 2. Phase diagram for Wigner crystal. The dashed lines show the classical melt-
ing line, Γ = 172, and quantum melting line for Coulomb systems, computed by
Jones and Ceperley [5] with PIMC. The solid lines show the classical melting line for
the Yukawa system with the screening length chosen for hydrogen. Our PIMC simu-
lations at rs = 200 (◦ and ⋄) show a significant reduction in the melting temperature
below the classical value due to the quantum effects of the protons.

The phase diagram in Fig. 2 relates our simulations at a fixed density of rs =
200 to the classical Yukawa melting computed by Hamaguchi, the classical
Coulomb melting line given by Γ = e2

rskbT
= 172, and the quantum melting for

Coulomb systems [5].

The most straightforward way to detect melting in the simulation is to monitor

the instantaneous value of the Lindemann ratio, γ =
√

〈u2〉/rNN , which relates
the average displacement of a particle from its original lattice site to the
nearest neighbor distance. Fig. 3 shows the Lindemann ratio for three Monte
Carlo simulations. At the beginning of each simulation, the particles are in the
classical b.c.c. ground state. For temperatures sufficiently above the melting
line, the system melts instantly. For temperatures only slightly above the
melting line, the simulation shows a meta-stable superheated solid, which

8



Monte Carlo time
0

1

2

3

Li
nd

em
an

n 
ra

tio
T=0.000027
T=0.000025
T=0.000023

Fig. 3. The evolution of the Lindemann ratio is shown for the three Monte Carlo
simulations in the vicinity of the melting temperature.

might melt at some point during the MC simulation, as the black dashed line
indicates. The time it takes to melt depends not only on temperature, but also
on system size, the type of MC moves, and the MC random numbers, thereby
making this criterion impractical for determining the melting temperature.
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Fig. 4. The average Lindemann ratio derived from PIMC and from the harmonic
lattice approximation.

The average values of the Lindemann ratio are shown in Fig. 4 as a function
temperature. At the thermodynamic melting temperature of 2.0×10−5, derived
from free energy calculations to be discussed later, the Lindemann ratio has
a value of 0.272. This number is not universal and its dependence on density
and the interaction potential remains to be studied further.
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Fig. 5. Pair correlation functions, g(r), for different temperatures.

Fig. 5 shows a series of pair correlation functions, g(r), for simulations at
different temperatures. The magnitude of the oscillations in the g(r) show
a significant temperature dependence in the liquid phase. However, there is
only a small change upon melting, and all g(r) functions in the solid phase
are practically identical to the example shown for T=2.3×10−5.
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Fig. 6. The sharp peaks in the structure factor, S(k), disappear when the system
melts and a pattern typical for a liquid appears. This transition coincides with the
increase in the Lindemann ratio.

Compared to the pair correlation function, the structure factor, S(k), shows
significant changes upon melting (Fig. 6). The disappearance of the peaks
coincides with the increase in the Lindemann ratio beyond its stability limit
of approximately 0.28. However, neither method can determine whether a
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simulation is in the meta-stable state. They only lead to an upper bound of
the melting temperature. To determine the thermodynamic phase boundary,
one needs the free energy in both phases, which can be obtained through
thermodynamic integration of the internal energies.
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Fig. 7. The internal energy per particle is shown as a function of temperature. The
classical kinetic energy and the Madelung term have been removed.

Fig. 7 compares PIMC internal energies with results from corresponding clas-
sical MC that we have performed. At high temperature when the thermal de
Broglie wavelength is short compared to the inter-particle spacing, the pro-
tons behave classically and the PIMC energies approach results from classical
MC simulations. At low T, both results differ substantially, due to the zero
point motion. The simulation results do not exactly reproduce the analytical
high T limit [16]. This discrepancy is caused by finite size effects, which be-
come larger in the limit of high temperature where correlations are weak, and
the Debye sphere increases as T 1/2. Therefore it eventually exceeds the size
of any simulation cell. That is why we complemented our study with results
from hyper-netted chain (HNC) calculations. Starting from the correct high
temperature limit, the HNC results converge to the classical MC results at
Γ ≈ 0.1.

In Fig. 8, we compare MC results with our results derived from the harmonic
lattice approximation and with the particle-in-a-cell (PIC) model. In the PIC
approximation, one assumes that the thermal motion of the particles are un-
correlated. One freezes all particles in the supercell except one and derives all
thermodynamic variables from the motion of this single classical particle. The
PIC internal energies agree remarkably well with the corresponding classical
MC results for the b.c.c. solid. However, a generalization of the PIC model to
the quantum case is not straightforward. If one naively considers a quantum
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Fig. 8. Low temperature region of Fig. 7. Results from the harmonic lattice approx-
imation and from a classical particle-in-a-cell model have been added. Furthermore,
PIMC and harmonic results for particles with mass=10 instead of 1 have been in-
cluded to demonstrate that the harmonic approximation becomes more accurate as
zero point fluctuations are reduced.

particle represented by a path in a lattice of frozen classical particles, then
the resulting kinetic energies are far too high (worse than the harmonic ap-
proximation), because the surrounding classical particles provide too high of
a confining force due to the missing quantum fluctuations.
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Fig. 9. Difference in internal, kinetic, and potential energy between PIMC and the
harmonic lattice approximation. The sharp kinks near T=2.5×10−5 indicate the
melting transition.

Fig. 8 also shows results from the harmonic lattice approximation for a unit
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cell of corresponding size. Harmonic internal energies are significantly overesti-
mated, primarily due to errors in the kinetic energy as demonstrated in Fig. 9.
The zero point motion of the protons is large enough so that paths travel into
regions of the potential where the harmonic approximation is no longer valid.
The comparison of the PIMC Lindemann ratios and the corresponding har-
monic values in Fig. 4 shows that the harmonic approximation localizes the
particles too much, thereby increasing the kinetic energy. To further support
this conclusion, we perform PIMC and harmonic calculation with particles 10
times as heavy. Fig. 8 shows that the agreement improves substantially.
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Fig. 10. Internal and free energies, E and F , are shown for the solid and liquid
phase.

Fig. 10 shows the internal PIMC energies along with the free energies obtained
from thermodynamic integration. The solid free energies agree very well with
solid internal energies until melting, which suggest that each phonon mode is
in its ground state. Excitations in the phonon spectra at higher temperature
then directly lead to the melting of the crystal.

At low T, the free energies of the crystalline state are lower than the extrap-
olated values for the liquid, which means the solid phase is stable and the
density of rs = 200 is not yet high enough to reach the quantum melting
transition at zero temperature (see Fig. 2).

At T=2.0×10−5, the computed free energies of both phases match, which
determines the thermodynamic melting point for the density of rs = 200. For
hydrogen, this corresponds to a temperature of 11,700 K, a mass density of
2,100 g cm−3, and a pressure of approximately 3×1017 Pa.

This pressure result is dominated by the kinetic energy of the non-interacting
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Fermi gas of electrons. At this high density of rs = 0.1 in conventional atomic
units, the Hartree-Fock Coulomb interaction of the electrons contributes only
−2%, the Thomas-Fermi electron-proton interaction −0.4%, and the electron
correlation in the homogeneous electron gas −0.02% to the total pressure.

Fig. 10 also shows that a number of simulations of the b.c.c. solid that appeared
to be stable were actually meta-stable thermodynamically, since free energy
calculations resulted into a lower melting temperature. This discrepancy was
also observed in the classical simulation results shown in Fig. 8.

The melting temperature of 2.0×10−5 for the quantum system is significantly
below the corresponding classical value of 2.7×10−5, which demonstrates the
importance of quantum effects. Furthermore, our Yukawa melting results sug-
gest that the departure from the classical melting line occurs at lower densities
and temperatures than predicted for Coulomb system by Jones and Ceper-
ley [5].

4 Conclusions

In this article, we used many-body computer simulations of protons interacting
via a Yukawa potential to model dense atomic hydrogen in the regime of
the Wigner crystal. Path integral Monte Carlo simulations were employed to
capture the quantum effects of the protons. Electronic screening effects were
treated in the Thomas-Fermi approximation, which distinguishes our results
from the earlier work by Jones and Ceperley [5].

We use the Lindemann ratio, pair correlation functions, and the structure
factor to study the stability of the Wigner crystal and to detect melting. We
observed that the system can remain in a meta-stable state of a super-heated
crystal during the entire course of a PIMC simulation, which makes a direct
determination of the melting temperature very difficult.

Instead, a reliable melting temperature can be obtained by matching of the
free energies of both phases, which were derived by thermodynamic integration
of the PIMC internal energies. For the density under consideration, rs = 200,
we found that the quantum Yukawa systems melts at significantly lower tem-
peratures than the corresponding classical system.

Furthermore, we compared our PIMC results with other more approximate
techniques. The harmonic lattice approximation overestimates the kinetic en-
ergies significantly because the zero point motion of the protons is strong
enough so that anharmonic effects in the crystal field become relevant. We also
compared with a classical particle-in-a-cell model and found good agreement
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with classical MC simulation. However this method cannot be generalized
easily to the case of quantum protons.

We plan to extend our analysis to other densities and to derive a phase diagram
that indicates the stability of the Wigner crystal of nuclei in the presence of
electronic screening effects. A careful analysis of finite size effects also remains
to be done. Future theoretical work on dense atomic hydrogen will need to
describe the electronic properties on a more fundamental level. Coupled ion-
electron Monte Carlo is one promising approach [21].
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