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ABSTRACT

By combining density functional molecular dynamics simulations with a thermodynamic inte-
gration technique, we determine the free energy of metallic hydrogen and silica, SiO5, at megabar
pressure and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica
dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 megabars, which has
implication for the evolution of rocky cores in giant gas planets like Jupiter, Saturn and a sub-
stantial fraction of known extrasolar planets. Our findings underline the necessity for considering
the erosion and redistribution of core materials in giant planet evolution models but also demon-
strate that hot, metallic hydrogen is good solvent at megabar pressures, which has implications

for high pressure experiments.

Subject headings: planets and satellites: dynamical evolution and stability — planets and satellites:
individual (Jupiter, Saturn) — planets and satellites: interiors

1. Introduction

Hydrogen is the simplest and most abundant
atom in the universe but its properties at high
pressure remain poorly characterized (McMahon
et al. 2012). In the interior of giant planets, hydro-
gen is predicted to occur in metallic form. While
such a state has been generated at high tempera-

ture with dynamic shock-wave experiments (Weir
et al. 1996), obtaining metallic hydrogen in static
high pressure experiments at room temperature
has been an elusive goal. While the earliest theo-
retical estimates by Wigner & Huntington (1935)
placed an insulator-to-metal transition at only 25
GPa, recent advances in diamond anvil cell experi-
ments (Eremets & Troyan 2011; Howie et al. 2012;



Zha et al. 2012) did not reveal conclusive evidence
of metallization for pressures up to approximately
400 GPa. The properties of metallic hydrogen
have consequently primarily been studied theoreti-
cally (Johnson & Ashcroft 2000) and with ab initio
computer simulations (Militzer & Graham 2006;
Vorberger et al. 2007; Hamel et al. 2011; McMa-
hon et al. 2012; Morales et al. 2013a; Soubiran
et al. 2013; Goncharov et al. 2013; Morales et al.
2013b; Becker et al. 2013) that we use also for this
article that is focused on the interaction of metallic
hydrogen and silica, SiO5. Silica is not only impor-
tant for geophysics but also a prototype material
for studying condensed matter physics at extreme
conditions. Hicks et al. (2006) used shock wave ex-
periments to study the thermodynamic properties
of liquid silica at megabar pressures.

In this article we focus on the question whether
silica dissolves into metallic hydrogen at megabar
pressures because this would have implications
for the stability of the cores of solar and extra-
solar gas giant planets. Many of the confirmed
eight hundred extrasolar planets are gas giants
that are primarily composed of dense fluid hy-
drogen and helium. Furthermore the Kepler mis-
sion has detected 2740 planet candidates and has
measured their radii and orbital period within
22 months of observations (Batalha et al. 2013).
In a few cases with multiple planets in close or-
bits, masses have been inferred from transit-timing
variations (Charbonneau et al. 2009). The Juno
mission is scheduled to arrive at Jupiter in 2016
and will measure the gravitational field of our
largest local gas giant with an unprecedented ac-
curacy, revealing clues about its inner mass dis-
tribution. Existing core-accretion models for gas
giants formation (Mizuno et al. 1978) hold that
these planets form from the rapid accretion of gas
around a rock-ice protocore. Therefore, accord-
ing to our understanding, the evolution of giant
planets starts with a differentiated rocky core sur-
rounded by an envelope of hot, dense hydrogen-
helium gas. The temperature in the envelope rises
gravitational energy from accretion is converted
to heat. An adiabatic temperature is rapidly es-
tablished. The evolution of a giant planet is con-
trolled by the energy loss due to thermal radia-
tion (Fortney & Nettelmann 2009). Conventional
giant planet models assume a stable core and a
sharp core-mantle boundary instead of taking into

account the possibility that the metallic hydrogen
layer may act as solvent for the initial protocore.
Answering the question whether giant planet cores
remain stable on a billion year time scale may
also provide an alternative explanation for the ob-
served heavy element enrichment in giant planet
atmospheres, which is currently attributed to late-
arriving planetesimals (Niemann et al. 1996; Ma-
haffy et al. 1998). If a core dissolved it would
lead to double diffusive convection (Guillot et al.
2004; Stevenson 1982; Leconte & Chabrier 2012,
2013), because gravity opposes the redistribution
of heavy core materials. This would introduce
compositional stratification and significantly re-
duce the rate at which heat can be transported
out of the interior, with substantial implications
for the thermal evolution and radius contraction
of giant planets (Chabrier & Baraffe 2007).

The initial cores of giant planets can be as-
sumed to consist of a combination of rocky and
icy materials. The rocky components are likely
to be dominated by iron and magnesium silicate
minerals. It was shown by Umemoto et al. (2006)
that post-perovskite MgSiO3 separates into MgO
and SiOy beyond ~ 10 megabars and ~ 10000
K, conditions that are expected to be exceeded
at the core-mantle boundaries of typical gas giant
planets. Recent ab initio calculations predicted
a substantial solubility of MgQO, water ice, and
iron in fluid, metallic hydrogen for the core-mantle
boundary of Jupiter and Saturn (Wilson & Mil-
itzer 2012b,a; Wahl et al. 2013). Therefore this
study is focused on the solubility of remaining core
material, SiOs, in order to obtain a more complete
picture of the behavior of metallic hydrogen as a
solvent of planetary materials.

At the core boundary of giant planets, the tem-
perature and pressure conditions are estimated to
be on the order of 10 to 40 Mbar and 10000 to
20000 K. Because such extreme conditions can-
not be yet probed with laboratory experiments,
we use ab initio computer simulations that can be
used directly to characterized material at such P-
T conditions (Militzer & Wilson 2010; Wilson &
Militzer 2010; Militzer 2013; Zhang et al. 2013).

2. Computational Methods

Using density functional molecular dynamics
(DFT-MD), we calculated the Gibbs free energy of



solvation, AGg., of SiOg, given by the difference
between the Gibbs free energy of the dissolved sys-
tem and that of the separate compounds (SiOa
and hydrogen) at fixed pressure-temperature con-
ditions. We begin by computing the free energy
of solvation of SiOs for a mixing ratio of one so-
lute atom per 128 hydrogen atoms (i.e. one SiOq
formula unit to 384 H) and later generalize our
results to other concentrations.

AGSOl(SiOQ : 384H) = G(H384SiOQ)

~ (G(Hass) + G510, .V

Given the large quantity of hydrogen gas in gi-
ant planets, we are primarily concerned with the
low-concentration limit. Thus we can assume that
solute atoms do not interact with each other and
we introduce the following approximation,

G<H384Si02) ~ G(nggsi)+2G<H1280)—k3T 10g(27/2>

(2)
The last term arises from the free energy of mix-
ing because we do not have the same number of
hydrogen atoms in each term.

Since the entropy term in the Gibbs free en-
ergies, G = E + PV — TS, is not directly ac-
cessible in standard molecular dynamics simula-
tions, we used a thermodynamic integration (TDI)
technique (Morales et al. 2009; Wilson & Militzer
2012a,b, 2010; Militzer 2013; Sugino & Car 1995)
to compute the free energy difference between the
system of interest and a simpler non-interacting
system whose free energy may be computed ex-
plicitly. The difference in Helmholtz free energy
between systems governed by two different poten-
tials is given by

AF :/0 (Us — Up)xd, 3)

where the angle brackets denotes an average taken
over trajectories generated in the system gov-
erned by the hybrid potential energy function Ul.
This method provides a general scheme to calcu-
late the Helmholtz free energy difference between
two systems governed by potentials U (r;) and
Us (r;), connected by the hybrid potential Uy =
(1 = AUy 4+ AUs. Since we have split the Gibbs
free energy of solvation in energies of four different
systems (pure silica, pure fluid hydrogen, fluid hy-
drogen with one O atom, and fluid hydrogen with
one Si atom), we need to perform four separate

sets of simulations at each pressure and tempera-
ture. Five equally spaced A\ values between 0 and
1 are taken for each of them to get a smooth curve
of (Uy — Uy) vs. A that can be interpolated via
quadratic interpolation to determine the integral.
Once we have obtained AF = Fy — F;, we add
the known free energy F; to determine the energy
of the system, Fb, governed by the potential Us.
The Gibbs free energy is obtained by the addition
of the PV term.

The thermodynamic integration is performed in
two steps: first, from a system governed by DFT
forces to a system interacting via a classical pair
potential and then from the classical system to a
reference system with a free energy that is known
analytically. For fluids, we chose an ideal gas while
for solid systems, we selected a system of indepen-
dent harmonic oscillators as reference system. For
the fluid systems, we constructed the classical two-
body potentials by fitted to the forces of a DFT-
MD trajectory using the force-matching method-
ology (Izvekov et al. 2004; Tangney & Scandolo
2002). In the case of solid SiOq system, we first
determined the harmonic spring constants from
mean squared displacement from an atom’s lat-
tice site and then fitted the residual forces with
pair potentials.

The DFT calculations throughout this work
were performed using the VASP code (Kresse &
Furthmiller 1996). We used pseudopotentials of
the projector-augmented wave type (Blochl 1994),
the exchange-correlation functional of Perdew,
Burke and Ernzerhof (Perdew et al. 1996), a cutoft
energy of 900 eV for the plane wave expansion of
the wavefunctions, and a 2 x 2 x 2 k-point grid
to sample the Brillouin zone, except for the SiO,
simulations where we used only the I' point. An
MD time step of 0.2 fs was used and the simu-
lation time ranged between 0.5 and 2.0 ps. The
AGy, values were confirmed to be well-converged
with respect to these parameters for the purpose
of this dissolution calculation.

For pure solid SiOz, we used the FesP-type
structure with the space group P-62m that was re-
cently predicted by Tsuchiya & Tsuchiya (2011) to
be the ground-state structure at pressures above
7 Mbar. We analyzed stability of each material
phase at pressures ranging from 10 to 40 Mbar
and temperatures ranging from 3000 to 20000 K
and confirmed that the structure remained solid



for all cases under consideration, except for the
20000 K and 20 Mbar where we found liquid SiOq
to be the stable phase.

Gibbs energies were computed for following sys-
tem sizes: H1287 ngssi, nggo, solid SIOQ in a
72-atom supercell, and liquid SiO in a cubic cell
with 96 atoms. The resulting Gibbs free energies
are shown in Table 1 and plotted as a function
of temperature in Fig. 1. The error bars on the
G values are dominated by two terms, the more
significant one being the uncertainty in the vol-
ume at the desired pressure due to finite simula-
tion time, and the other being the uncertainty in
the (UprT —Uclassical) terms in the thermodynamic
integration.

3. Results and Discussion

The results in Table 1 are used in conjunction
with the equations (1) and (2) to obtain the Gibbs
free energies of solvation in Table 2. A negative
Gibbs free energy implies that the dissolved state
has a lower Gibbs free energy than the separate
phases, demonstrating that solvation is preferred
at a concentration of 1:384. A positive free energy
indicates that the fluid system is supersaturated
and that deposition of fluid SiOs, or formation of
solid grains, will be thermodynamically favored.
Our results in Fig. 2 are not too different from
those found for MgO (Wilson & Militzer 2012a),
showing that SiOs is also soluble at temperatures
that are a bit lower for a given pressure, certainly
well below those at Jupiter’s core-mantle bound-
ary. This solubility occurs at higher temperatures
than water ice (Wilson & Militzer 2012b), where
the solubility was already strongly favored at much
lower temperatures of 2000-3000 K in the same
pressure range.

Gibbs free energy of solvation can be gener-
alized to other concentrations without perform-
ing additional DF'T-MD simulations if the average
separation between solute atoms is large enough so
that their interaction can be neglected. Under this
assumption, the free energy of mixing yields the
difference of AGg, between a solution of one SiOq
formula unit in m versus n hydrogen atoms (Wil-
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Fig. 1.— (Color online) Computed solvation curve
AG for different pressures, where negative Gibbs
free energy represents a preference for the dis-
solved state. Open squares, circles and diamonds
represent states where SiOs is solid, while the filled
red circle corresponds to a state where SiOy was
found to be liquid.

son & Militzer 2012b),

AGSOl [m] - AC;(sol [n] — mln mVH + VSi + 2VvO
kT N mVu
(nVH + Vsi + 2Vo)
—nln ,
HVH
mVyg + Vs + 2Vo
| .
3 n(nVH-l-VsH-?Vo)

where Vg, Vo and Vg; are the effective volumes
of the H, O, and Si atoms that we obtained by
comparing the volumes of the different fluid sim-
ulations at same pressure and temperature. Us-
ing a linear interpolation for the data in Table 2,
we can determine the saturation concentration for
SiO4 in fluid hydrogen as a function of tempera-
ture and pressure throughout the 10-40 Mbar and
300020000 K range. A contour plot of constant
saturation solubility is shown in Fig. 2. Solute
concentrations higher than 1:100 are not shown
because they may lead to interactions between so-
lute atoms. Despite of an error bars of approxi-
mately 1000 K that should be considered to be un-
certainties of the contours, these results show that
SiOs is highly soluble at both Jupiter’s and Sat-
urn’s core-mantle boundary conditions. This is in
contrast to MgO, which may be not be as highly
soluble at Saturnian core conditions. Therefore,
there exists the possibility that SiOs may dissolve



from Saturn’s core but leave solid MgO behind.
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Fig. 2.— Saturation solubility of SiO, in metal-
lic hydrogen (this work; solid lines) and MgO
(from Wilson & Militzer (2012a); dashed lines)
as a function of temperature and pressure. The
temperature-pressure conditions of the Jovian and
Saturnian core-mantle boundaries are shown for
comparison.

The Gibbs free energy of solubility AG may
be split into three components: an internal en-
ergy component AU, a volume contribution PAV
and an entropic term —T'AS, which lead to AG =
AU — TAS + PAV. The PAV and AU values
can be directly extracted from standard DFT-MD
simulations. The remaining term is —7T'AS from
calculated AF. All terms are shown in Fig. 3 as
a function of temperature at 20 Mbar. The PAV
term was comparatively close to zero but shows
a slight preference of approximately 0.5-3.5 eV
for materials to remain separate, suggesting the
dissolution reaction is not a pressure-driven pro-
cess. The AU term also shows an energy barrier
against dissolution that is slightly larger than the
PAV term. For all temperatures under consider-
ation, the entropic term —T'AS is negative, con-
firming that more disorder is present in the dis-
solved state. The —T'AS term exhibits a steep
negative slope as a function temperature that in-
troduces a sign change into the Gibbs energy bal-
ance at T=6000 K for 20 Mbar where SiOs is

solid. Above this temperature, dissolution is fa-
vored, which can be considered to be an entropy-
driven process similar to HoO and MgO (Wilson
& Militzer 2012b,a). For iron, —TAS term also
favors dissolution but there is no energy barrier to
overcome because at megabar pressures, hydrogen
and iron are both metals that mix at low temper-
ature (Wahl et al. 2013).

Figure 3 shows that the Gibbs free energy of
solubility depends linearly on temperature. This
trend continues into the liquid phases as our data
point as 20000 K confirms. For the temperature
interval from 10000 and 20000 K where one ex-
pects SiOs to melt at 20 Mbar (Gonzélez-Cataldo
et al. 2014), this trend implies that the Gibbs
free energy difference between the solid and lig-
uid phases is small compared to Gibbs free energy
change induced by dissolution. If SiOs melts in
the vicinity of the dissolution transition, one would
expect this transition to introduce only a modest
change in slope into saturation solubility curves
in Fig. 2 because the Gibbs free energy changes
continuously across the melting transition.

100

o
11 1
] 1
1 ]
1 )
1 1
1 ]
1 1
1 1
1 1
1 ]
1 1
P
]
i 1
i 1
1 1
1 ]
1 1
1 ! 7]
1
1
1 ! ]
1
] 4
" )

o .
4 [ “oay
L "~.~
—20- "*... 7
[ a—aAU  TTTeel "n,. 1
[o—orAV T ]
-30 omo0pG T 1
[ O—O-TAS ]
L L L L Il L L L L L L L L L Il L L L L Il L
0 5000 10000 15000 20000

Temperature (K)

Fig. 3.— (Color online) Splitting of AG at 20
Mbar into its three constituent components: the
internal energy term AU that represents differ-
ences in chemical binding, the PAV term that
arises from volume differences, and the remain-
ing —TAS term which represents entropic effects.
The arrow marks the temperature above which
dissolutions favored at concentration of one SiOq
in 384 hydrogen atoms.



4. Conclusions

The presented ab initio free energy calculations
demonstrate that metallic hydrogen is a good sol-
vent for silica at megabar pressures for tempera-
tures above 5000 K. This result is consistent with
recent ab initio solubility calculations that pre-
dicted H2O to dissolve into metallic hydrogen at
2000 to 3000 K (Wilson & Militzer 2012b) and
MgO at 6000 to 8000 K (Wilson & Militzer 2012a).
This suggests other insulating materials may dis-
solve at a comparable temperature range. Iron
was found to dissolve at low temperature because
it is a metal (Wahl et al. 2013). These findings
suggest that hydrogen will spontaneously react
with any material that is used as confinement dur-
ing dynamic shock wave experiments that reach
megabar pressure and high temperatures. Our
findings indirectly places a limit on the time scale
of such experiments before a significant contami-
nation of sample sets in.

Our results also have implications for the evo-
lution of giant planets. We predict that the SiOs
component has been eroded from the cores of
Jupiter and Saturn while MgO in Saturn’s core
may remain stable. Therefore a partial solvation
of the Saturnian core could have taken place, tak-
ing away more volatile materials like SiOo and wa-
ter ice, leaving behind less soluble materials like
MgO. Because of the differences between the sol-
ubility curves of MgO and SiO; in Fig. 2, partial
core erosion may also occur in extrasolar gas giant
planets that are smaller than Saturn but still large
enough to contain metallic hydrogen. In genernal,
larger, hotter interiors are expected to promote
core erosion and a greater degree of redistribution
of heavy material (Guillot et al. 2004). Provided
the necessary energy for convection, the material
may be redistributed throughout the entire planet,
leading to an enrichment in heavy elements in gi-
ant planets atmospheres that have previously been
attributed to late-arriving planetesimals.

Alternatively, the rate of redistribution may be
hampered by compositional stratification that is
the result of double diffusion convection (Guillot
et al. 2004; Stevenson 1982; Leconte & Chabrier
2012). The stratification would also limit the heat
transport from the core, delay a planet’s cooling,
and possibly explain the inflated radii that have
been observed for a large of number giant exo-

planets (Chabrier & Baraffe 2007).

We have assumed that there is sufficient hydro-
gen available for the approximation of noninter-
acting solute atoms to remain valid. Also other
stoichiometries of SiO5 have not been considered,
assuming Si and O to dissolve in a one-to-two ratio
according to the charge balance.

Our results confirm that the core erosion must
be taken into account when future models of giant
planet interiors are constructed. The redistribu-
tion of heavy element has important implications
in the heat transport and mass distribution, and
core erosion plays a fundamental role in this as-
pect, since it may be the source of the presence of
these elements in the outer layers. Further mod-
els for the upconvection of core material are also
necessary to understand the present structure of
Jupiter and other planets, whose effects may be
reflected on the gravitational moments to be mea-
sured by the Juno mission.
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TABLE 1

GIBBS FREE ENERGIES OF PURE HYDROGEN, HYDROGEN WITH OXYGEN, HYDROGEN WITH SILICON, AND
S105 (SOLID IN ALL CASES, EXCEPT FOR 20 MBAR AND 20000 K).

P, T G(Hizs) G(H1280) G(Hj2sSi) G (SiO2)
(Mbar, 1000K) (eV) (eV) (eV) (eV)
10, 3 671.4(2) 688.6(2) 705.4(3) 63.3(1)
10, 5 559.0(5) 573.5(4) 590.5(5) 60.2(1)
20, 3 1270.7(2)  1304.7(2)  1330.1(3)  121.0(1)
20, 5 1170.8(4)  1202.4(5)  1228.2(3)  118.4(1)
20, 10 843.2(4) 868.3(4) 893.8(2)  109.1(4)
20, 20 17.3(5) 26.9(6) 53.6(7) 81.8(1)
40, 3 2131.4(2)  2191.8(2)  2220.4(1)  211.3(1)
40, 7 1936.2(3)  1991.4(3)  2030.7(3)  206.0(2)
40, 10 1747.4(1)  1799.0(6)  1837.6(9)  200.6(3)
40, 15 1384.3(8)  1427.9(4)  1467.6(8)  190.1(4)




TABLE 2

(GIBBS FREE ENERGIES OF SOLUBILITY FOR SIOs INTO HYDROGEN AT A CONCENTRATION OF ONE PART
IN 384 HYDROGEN ATOMS.

P T AGso1
(Mbar) (K) (eV)
10 3000 4.92 £ 0.69
10 5000 0.32£1.90
20 3000 6.35 £0.78
20 5000 2.18 +1.63
20 10000 —8.37 £ 1.45
20 20000 —26.47 £ 2.14
40 3000 7.40 £0.63
40 7000 —0.93+1.19
40 10000 —7.13+1.60
40 15000 —19.59 £ 2.55




