
Ab Initio Equation of State for Hydrogen-Helium Mixtures with
Recalibration of the Giant-Planet Mass-Radius Relation

B. Militzer
Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley,

CA 94720, USA.

and

W. B. Hubbard
Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA.

ABSTRACT

Using density functional molecular dynamics simulations, we determine the equation of state
for hydrogen-helium mixtures spanning density-temperature conditions typical of giant planet
interiors, ∼ 0.2−9 g cm−3 and 1000−80 000 K for a typical helium mass fraction of 0.245. In
addition to computing internal energy and pressure, we determine the entropy using an ab initio
thermodynamic integration technique. A comprehensive equation of state (EOS) table with 391
density-temperature points is constructed and the results are presented in form of two-dimensional
free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical
EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial
revision of the inferred thermal state of giant planets with known values for mass and radius.
Changes are most pronounced for planets in the Jupiter mass range and below. We present a
revision to the mass-radius relationship which makes the hottest exoplanets increase in radius by
∼0.2 Jupiter radii at fixed entropy and for masses greater than ∼0.5 Jupiter mass. This change
is large enough to have possible implications for some discrepant “inflated giant exoplanets”.

Subject headings: equation of state, hydrogen-helium mixtures, ab initio simulations, giant planets,
extrasolar planets

1. Introduction

The semi-analytical model by Saumon &
Chabrier (1992) (SC) for the equation of state
(EOS) of hydrogen and its extension to hydrogen-
helium mixtures (Saumon et al. 1995) were very
successful and have been used in numerous calcu-
lations for the interiors of giant planets. However,
with the development of ab initio computer sim-
ulation techniques many uncontrolled approxima-
tions can now be avoided, simplifications inherent
to analytical EOS models and severely limiting
their predictive capabilities in the regime of high
density and low temperature where interactions
between particles are strong. Relying solely on
analytical methods, it is difficult to determine the

ionization state of the different chemical species
that are present in the dense fluid.

Ab initio simulations allow one to study a fully
interacting system of particles and to determine its
properties by deriving the electronic states explic-
itly for every configuration of nuclei. No parame-
ters are adjusted to match experimental data, but
ab initio simulations still rely on approximations
to solve the Schrödinger equation. However, they
are not specific to the particular material nor the
pressure-temperature conditions under considera-
tion.

In this paper, we rely on density functional
molecular dynamics (DFT-MD) simulations that
have been employed before to study hydro-
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gen (Lenosky et al. 2000; Militzer et al. 2001; Des-
jarlais 2003; Bonev et al. 2004; Nettelmann et al.
2008; Morales et al. 2010; Caillabet et al. 2011;
Collins et al. 2012; Nettelmann et al. 2012), he-
lium (Militzer 2006; Stixrude & Jeanloz 2008; Mil-
itzer 2009) and hydrogen-helium mixtures (Vor-
berger et al. 2007b,a; Militzer et al. 2008; Militzer
2009; Hamel et al. 2011). While the computa-
tion of the pressure and the internal energy is
straightforward from DFT-MD simulations, the
entropy is not directly accessible. However, an
accurate knowledge of the adiabats of hydrogen-
helium mixtures at high pressure is of crucial im-
portance for the determination of the temperature
profile, the density, and the thermal energy bud-
get in the interior of a giant planet. In 2008, two
groups constructed Jupiter interior models from
DFT-MD simulations (Militzer et al. 2008; Net-
telmann et al. 2008). While the derived pressures
and internal energies can be considered to be more
reliable than those predicted by the SC model,
both papers predicted very different interior tem-
perature profiles for Jupiter (Militzer & Hubbard
2009). Using ab initio thermodynamic integration
techniques (TDI), we recently showed (Militzer
2013), that the work by Nettelmann et al. (2008)
overestimated the temperature at Jupiter’s core-
mantle boundary (CMB) by 2450 K (15%) while
we underestimated it by 2870 K (18%) in Militzer
et al. (2008). The revised temperature for the
Jupiter’s CMB is 16 150 K and the corrections to
the SC EOS model are in fact only −350 K.

At conditions of Jupiter’s CMB, hydrogen is
metallic and characterized by a high degree of elec-
tronic degeneracy. Such a degenerate state is de-
scribed rather well by the the SC model. How-
ever, when we applied the TDI technique to ex-
plicitly determine the entropy over a wide range
of pressure-temperature conditions, we identified
a number of discrepancies between the DFT-MD
results and the SC model. Near the molecular-to-
metallic transition, our simulations predict a sig-
nificant shift of the adiabat towards higher densi-
ties. At high temperature, where electronic exci-
tations matter, our computed entropies are higher
than those of the SC model. We also do not per-
fectly reproduce the SC entropies in the molecular
regime at low density.

Rather than providing a separate hydrogen and
helium EOS and relying on the linear mixing

approximation (Saumon et al. 1995; Nettelmann
et al. 2008), we computed the EOS over a wide
range of density-temperature conditions for a rep-
resentative mixing ratio of NHe =18 helium atoms
in NH = 220 hydrogen atoms, corresponding to a
helium mass fraction of Y=0.245, which is close
to the solar value. This means that the nonideal
mixing effects are fully incorporated. In Vorberger
et al. (2007b), we showed for example that the
presence of helium makes the hydrogen molecules
more stable and reduces the dissociation fraction
at given pressure and temperature. Even if other
mixing ratios become of interest, as the result of
helium rain (Stevenson & Salpeter 1977; Morales
et al. 2009; Lorenzen et al. 2009; Wilson & Militzer
2010; McMahon et al. 2012), one is still better off
by starting from an EOS for a typical hydrogen-
helium mixture and then perturbing the mixing
ratio by a comparatively small amount. Increasing
or decreasing the helium fraction requires knowl-
edge of a helium or hydrogen EOS, respectively.
For the helium EOS, we recommend our first-
principles computation (Militzer 2009) because
it provides simulation data points for the pres-
sure, P , internal energy, E, Helmholtz free energy,
F , and entropy, S, over a wide parameter range
and a thermodynamically consistent free energy
fit for interpolation. For available hydrogen EOS
work, we refer to the recent review by McMahon
et al. (2012) but there has also been a consider-
able theoretical effort compute the hydrogen EOS
with semi-analytical techniques (Dharma-wardana
& Perrot 2002; Kraeft et al. 2002; Rogers & Nay-
fonov 2002; Safa & Pfenniger 2008; Ebeling et al.
2012; Alastuey & Ballenegger 2012). If the pertur-
bation in the helium fraction is sufficiently small,
one may use the SC EOS for simplicity.

2. Ab Initio Simulations

We base our ab initio entropy calculations on
our recent article (Militzer 2013) where we showed
how the TDI technique can be extended to study
molecular hydrogen and how it can be applied effi-
ciently to determine the entropy at high tempera-
ture where electronic excitations matter. The TDI
technique allows one to determine the difference in
the Helmholtz free energy between two interacting
many-body systems at fixed density and tempera-
ture (Morales et al. 2009; Wilson & Militzer 2010,
2012a,b; McMahon et al. 2012; Wahl et al. 2013).
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We apply this method to determine the free en-
ergy difference between the DFT simulations and
a system of classical forces that we construct:

FDFT − Fcl =

∫ 1

0

dλ 〈VKS − Vcl〉λ . (1)

The angle brackets represent an average over tra-
jectories governed by forces that are derived from a
hybrid potential energy function, Vλ = λVKS+(1−
λ)Vcl. Vcl is the potential energy of the classical
system and VKS is the Kohn-Sham energy (Kohn
& Sham 1965). The presence of electronic excita-
tions leads to an intrinsic contribution to the en-
tropy and affects the forces on the nuclei (de Wijs
et al. 1998) that need to be derived from the Mer-
min free energy (Mermin 1965), Ω = VKS − TSel.
We combined both contributions into the follow-
ing expression for the ab initio entropy (Militzer
2013):

TS = 〈VKS〉+ 〈Kion〉 −
∫ 1

0

dλ 〈Ω− Vcl〉λ − Fcl.

(2)
〈VKS〉 includes contributions from partially occu-
pied excited states. The λ integration was per-
formed using five independent MD simulations
with λ equally spaced between 0 and 1. To make
this integration process efficient, we construct the
pair potentials of the classical system to match the
DFT forces as closely as possible (Izvekov et al.
2003). The computation of classical free energy is
performed with Monte Carlo methods by thermo-
dynamic integration to an system of noninteract-
ing particles.

All simulations were performed with the VASP
code (Kresse & Furthmüller 1996) with pseu-
dopotentials of the projector-augmented wave
type (Blöchl 1994) and a plane wave basis set
cutoff of at least 1000 eV. The Perdew-Burke-
Ernzerhof exchange-correlation functional (Perdew
et al. 1996) was used throughout, but it has been
shown recently that simulations based on the lo-
cal density approximation yielded very similar re-
sults for Jupiter’s deep interior (Militzer 2013). In
the same article, we also performed a combined
finite-size and k point analysis that demonstrated
that simulations with 256 electrons and the zone-
average point k = ( 1

4 ,
1
4 ,

1
4 ) are sufficiently accu-

rate. All results that we report in this article were
thus obtained with 220 hydrogen and 18 helium
atoms in periodic boundary conditions.

We used a MD time step 0.2 fs, except for tem-
perature of 50 000 K and above where we used
a time step of 0.1 fs to accurately capture the
more rapid collisions between particles at elevated
temperatures. All standard DFT-MD simulations
that we performed to determine P and E were
2.0 ps long, except at the highest temperatures,
where 1.0 ps were found to be sufficient because
the auto-correlation times are short and the er-
ror bars are small. All simulations were initialized
with positions and velocity vectors from converged
MD simulations at nearby densities and tempera-
tures. This allowed us to run the TDI simulations
for only 0.5 ps at each λ point.

We also adjusted the number of orbitals in the
calculations to accommodate the partial occupa-
tion of excited electronic states according to Mer-
min functional (Mermin 1965). The number of
orbitals was increased until the error in the inte-
gral of the Fermi function was reduced to less than
10−5. This required many orbitals at high tem-
perature and low density. Up to 816 were used,
a significant increase in the computational cost
over the 128 needed for ground state calculations.
This is the primary reason why we omitted sim-
ulations that would lead to entropy values above
approximately 12.5 kb/el. The regime of higher
temperatures can be studied much more efficiently
with path integral Monte Carlo (PIMC) simula-
tions because the computational cost of this alter-
native first-principles simulation technique scales
like 1/T . PIMC simulations have been applied to
hydrogen (Pierleoni et al. 1994; Magro et al. 1996;
Militzer et al. 1999; Militzer & Ceperley 2000; Mil-
itzer & Graham 2006; Hu et al. 2010, 2011), he-
lium (Militzer 2006, 2009), and hydrogen-helium
mixtures (Militzer 2005) at high pressure and tem-
perature and most recently also to study the EOS
of carbon and water (Driver & Militzer 2012).

As Fig. 1 indicates, we did not perform any
TDI calculations at very high densities (rs ≤ 1.75)
and temperatures below 5000 K because under
such conditions, hydrogen-helium mixtures will
exhibit signs of spontaneous phase separation in
the course of a typical DFT-MD simulation (Mil-
itzer 2013). The immiscibility of hydrogen and
helium at high pressure leads to helium rain in
giant planets. This process is the accepted ex-
planation for the observed luminosity excess of
Saturn (Stevenson & Salpeter 1977) and has re-
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cently been invoked to explain the depletion of
neon in Jupiter’s atmosphere (Wilson & Militzer
2010). Because of constraints on size and time
of DFT-MD simulations, one can only observe
the spontaneous separation of the mixture into
a helium-rich and hydrogen-rich phase for con-
ditions that are sufficiently deep in the region
of immiscibilty. The determination of pressure-
temperature boundaries of this region can more
accurately be derived with Gibbs free energy cal-
culations. The need to accurately determine the
non-ideal entropy of mixing was the primary mo-
tivation for Morales et al. (2009) to adopt the
TDI technique to study hydrogen-helium mix-
tures. While our understanding of this process
is still incomplete, its characterization goes be-
yond the scope of this study that reports results
for the mixed phase only, even though for some
high density points at 5000 K, the separate state
may have a lower Gibbs free energy. We also do
revisit the question of a first order phase transi-
tion from molecular to metallic hydrogen because
all ab initio simulations report that a discontinous
change in thermodynamic variables only occurs at
temperature well below those in the interiors of
giant planets (Militzer et al. 2008; Morales et al.
2013).

Finally we need to discuss how we add the quan-
tum effects in the motion of nuclei to our DFT-
MD results that treat all nuclei classically (Mil-
itzer 2013). For the hydrogen-helium mixtures in
giant planets, it is the vibrational state of the hy-
drogen molecules that matters for temperatures
up to ∼5000 K while the rotational quantization
is negligible for a planet’s deep interior. A rigor-
ous treatment of the nuclear motion with path in-
tegral molecular dynamics is very expensive but,
while this paper was under review, the first re-
sults for pressure and conductivity of dense hy-
drogen have been reported (Morales et al. 2013).
An accurate method for the determination of the
entropy is still not available. In this study, we
use an approximate method to derive the quan-
tum correction due to molecular vibrations from
the intramolecular pair potentials, Vmol, that we
have already derived. We derive the difference be-
tween the quantum and the classical entropy by
solving a 1D problem through exact diagonaliza-
tion. The resulting eigenstates are use to compute
the canonical partition function that is compared

with the classical analogue, an integral over the
Boltzmann factor. The quantum corrections for
all thermodynamic variables are derived from the
comparison of both partition functions. Since our
intermolecular potentials, Vmol, are derived from
the DFT-MD forces at a particular density and
temperature, our approach captures some of the
interaction effects among hydrogen molecules and
with helium atoms. The magnitude of this cor-
rection is discussed in Militzer (2013). We have
added the zero-point correction to all EOS results
that we discuss in the following section.

3. Equation of State Results

We report the computed equation of state in
the form of a table, a series of figures, and in ana-
lytical form as two-dimensional fit of the free en-
ergy. In table 1, we provide the thermodynamic
functions that directly follow from analysis of the
DFT-MD trajectories. The pressure and internal
energy were computed for 391 different density-
temperature points (see Fig. 1). The 1-σ error bars
correspond to statistical uncertainty that arises
from the finite length of the MD simulations. For
131 points in table 1, the thermodynamic inte-
gration was performed with five λ points and the
free energy and entropy are reported in addition.
Only counting the production runs that led to re-
sults in table 1, the total CPU time consumed for
this project amounted to 850 000 core-hours on In-
tel Nehalem processors. This is equivalent to using
100 cores for an entire year, which is a considerable
amount of computer time by today’s standards.

In figures 2, 3, 4, 5, 6, 7, 8, and 9, we plot the in-
ternal energy, pressure, Helmholtz free energy, and
entropy respectively as a function of temperature
and density. Every circle corresponds to a particu-
lar DFT-MD simulation listed in table 1, without
any interpolation being performed. The dashed
lines are the results of the most common version
of the analytical SC EOS model where the differ-
ent thermodynamic functions have been smoothly
interpolated across the molecular-to-metallic tran-
sition in hydrogen.

To accommodate the wide parameter range of
our simulations, we plot the different thermody-
namic functions on logarithmic scale. Since these
functions depend strongly on density and tem-
perature, we added a second panel where we re-
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Fig. 1.— Temperature-density conditions of DFT-
MD simulations. The circles indicate parameters
where entropy and free energy have been calcu-
lated in addition to the pressure and internal en-
ergy. The lines show adiabats. The labels specify
their entropy values in units of kb per electron.
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moved most of this dependence by introducing
a scale factor equal to rs or T raised to some
power. Here rs is the Wigner-Seitz radius that
specifies the density of system according to 4π

3 r
3
s =

V/Ne = n−1. The number density, n, is derived
from the number of electrons, Ne = (NH + 2NHe),
per unit volume V . The mass density is given by
ρ = n(NHmH +NHemHe)/(NH + 2NHe) where mH

and mHe are the masses of the hydrogen and he-
lium atoms. The rescaling of the ordinate makes
it easier to identify the deviations from the SC
model while our simulation results can still be
reproduced easily. The ordinates are plotted in
atomic units. Lengths including rs are given in
Bohr radii (a0=5.29177209×10−11 m), energies in
Hartrees (4.35974380×10−18 J) per electron (el.),
and entropies are specified in units of kb per elec-
tron, where kb is Boltzmann’s constant.

Figure 2 shows a comparison between the inter-
nal energies from DFT-MD simulations with the
predictions of the SC EOS model. For a low den-
sity of rs = 2.4, excellent agreement is found for a
temperature range from 1000 to 20 000 K. Hydro-
gen gradually changes from a molecular state to
an atomic state in this temperature interval and,
from the good agreement, one may conclude that
the thermally activated dissociation of molecules
is well described in the SC model. However, above
20 000 K, the SC model predicts an strong and ar-
tificial increase in the internal energy that is the
result of an inaccurate description of electronic
excitations. This deviation was first identified
by Militzer & Ceperley (2001) when predictions
from the SC model were compared with PIMC
simulations. Figure 3 shows that this deviation is
present at 20 000 K for whole density range under
consideration and extends to much higher temper-
atures also.

Figure 2 shows that the favorable agreement
between DFT-MD results and SC predictions be-
low 20 000 K continues to hold up to a density of
rs = 1.6. When the internal energy is compared
for a higher density of rs = 1.0 or 1.2 where hy-
drogen is metallic, one finds that DFT-MD results
and SC predictions are offset by a nearly constant
amount.

The internal energy curves of rs = 1.6 and 2.4
appear to cross over in Fig. 2 at a temperature of
27 000 K, which is consistently predicted by DFT-
MD results and the SC model. Figure 3 shows

that this is simply a consequence of internal en-
ergy exhibiting a minimum when plotted at con-
stant temperature as function of density. At high
density, the internal energy sharply rises because
of Pauli exclusion effects between the electrons. In
the low density limit, the internal energy rises also
because the ionization fraction increases as a result
of the increased gain in entropy that is associated
with electrons becoming free particles.

In Fig. 4, we compare the pressure predicted
from DFT-MD simulation with the SC model. At
a high density of rs = 1.0 where the hydrogen-
helium mixture is metallic, we find fairly good
agreement over the entire temperature range. This
implies that the deviation that we identified for
the internal energy in this regime, varies slowly
with density and does not significantly affect the
pressure in the SC model.

At a low density of rs = 2.2 and 2.4, we found
good agreement up to a temperature of 5000 K.
At this temperature, we see a small decrease in
slope in the DFT-MD data that is missing in the
predictions of the SC model. We attribute this
slope change to the dissociation of molecules in the
DFT-MD simulations. At 20 000 K, the SC model
predicts a significant decrease in slope which is not
present in the DFT-MD data. This slope change
in the SC predictions can again be attributed to an
inaccurate description of ionization, which leads to
deviations over the whole density range under con-
sideration (Fig. 5). At an intermediate density of
rs = 1.6 close to the molecular-to-metallic transi-
tion, we find that the SC model overestimates the
pressure up to about 20 000 K and underestimates
for higher temperatures. The deviations around
100 GPa, 5000 K, and rs = 1.6 (0.75 g cm−3) are
of particular significance. The DFT-MD simula-
tions predict pressures that are much lower than
those of the SC model. This leads a significant
departure in the resulting adiabats. Its implica-
tion for the interiors of giant planets will later be
further analyzed.

In figures 6 and 7, the Helmholtz free energy
from DFT-MD simulations and the SC model are
compared. In general the agreement appears to be
much better than for other thermodynamic func-
tions that are derivatives of it. Still, one finds that
the SC model overestimates the free energy in the
metallic regime, mirroring the deviations that we
have discussed for the internal energy.
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In Fig. 8, the entropies at different densities
are compared as a function of temperature. At a
very high density of rs = 1.0, very good agree-
ment between DFT-MD results and the SC model
is found up to 50 000 K. For lower densities, the
SC model predicts a sharp entropy increase at
20 000 K, which is again a result of the treatment
of ionization effects. This trend is not confirmed
by the DFT-MD simulations. One also finds sig-
nificant deviations at lower temperatures, in par-
ticular around rs=1.6. Even at a relatively low
density of rs = 2.2, the agreement is not per-
fect. From 4000 to 20 000 K, the SC model un-
derestimates the entropy and it overestimates the
entropy for lower temperatures. Figure 9 shows
that such deviations persist over a wider density
range. In principle, one expects a non- or weakly
interacting gas of hydrogen molecules and helium
atoms to be perfectly described by the SC model.
However, the density that we can efficiently study
with DFT-MD simulations does not yet appear to
be low enough for the deviations to decay to zero.

4. Free Energy Fit for the Equation of
State

We fitted our ab initio results for P , E, F , and
S in table 1 with a two-dimensional spline function
that represents the Helmholtz free energy in terms
of temperature, T , and electron density, n. By
construction, this fit is thermodynamically consis-
tent. We employ the same functional form that we
used to represent the free energy of hot, dense he-
lium in (Militzer 2009), except the splines here are
functions of n rather than log(n). Table 2 provides
the free energy as well as the required derivatives
on a number of (n, T ) knot points. Atomic units
are used throughout.

To evaluate the fit for (n∗, T ∗), we first con-
struct a separate one-dimensional cubic spline
function, Fn(T ), for every density on a grid rang-
ing from rs=3.581 to 0.536 (0.0670−20.0 g cm−3).
At every density, the free energy is given on a num-
ber of temperature knots and its first derivative,
∂F
∂T

∣∣
n
, is specified for the highest and lowest tem-

peratures. We construct a similar one-dimensional
spline function that represents ∂F

∂n

∣∣
T

(T ) at the
smallest and largest density. We then evaluate
all these splines functions at T ∗ and construct a
one-dimensional spline function FT∗(n) from the
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Fig. 10.— Adiabats derived from DFT-MD simu-
lations are compared with the SC model. The la-
bels denote the entropy in units of kb per electron.
The circles indicate parameters where entropy and
free energy have been calculated in addition to the
pressure and internal energy. The horizontal ar-
rows label conditions where the deviation from the
SC model are large and important for the interiors
of Saturn and Jupiter. The vertical arrows indi-
cate deviations are high temperature where the SC
model does not treat electronic excitations accu-
rately. In the flat part from 0.5–1.2 g cm−3, lowest
adiabat in the upper panel (S=6 kb/el.) passes
through the region of hydrogen-helium immisci-
bility where mixed state that we described here is
not thermodynamically stable.
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free energy values and its first derivatives at the
boundaries. This provides us not only with a
straightforward way to obtain the free energy at
every (n, T ) point but we can also derive the pres-
sure and entropy by taking analytical derivatives,

P = n2 ∂F

∂n

∣∣∣∣
T

and S = − ∂F

∂T

∣∣∣∣
n

. (3)

The internal energy and Gibbs free energy then
follow from E = F + TS and G = F + PV .

When we constructed this fit, we made sure
every EOS point in table 1 is well reproduced.
We extended the domain of the fit a bit beyond
the range of the DFT-MD data. This leads to a
smoother representation of the data in the interior
of the domain and also allows us to gradually ap-
proach the SC EOS in the limit of low density. As
figure 10 shows, we were able to smoothly match
onto the SC adiabats for entropy values from 6 to
10 and again for 13 and 14 kb/el. A disagreement
remains for S=11 and 12 kb/el. but the SC EOS
is not thermodynamically consistent in the regime
of 10 000 to 20 000 K and no attempt was made
to reproduce those adiabats. So far, only the one
exoplanet HAT-P-32b (Hartman et al. 2011) ap-
pears to have an internal entropy in excess of 11
kb/el.; see Figure 12.

We also find a significant disagreement in the
high density limit between our DFT-MD adiabats
and the predictions of the SC model. Starting with
entropy values of S = 10 kb/el., the DFT-MD re-
sults predict the adiabats reach states of higher
temperatures and higher pressure for a given den-
sity.

The most significant result of Fig. 10 is the de-
viations along the S=7 kb/el. adiabat. The DFT-
MD simulations predict a decrease in slope of the
adiabat exactly where the hydrogen molecules dis-
sociate (Militzer et al. 2008). Since the SC model
interpolates between separate atomic/metallic and
molecular thermodynamic descriptions, it has no
predictive power in the regime of pressure dis-
sociation where all the different species interact
strongly.

5. Giant Planet Interiors

In Fig. 11, we compare different predictions for
the interior adiabat of a Jupiter-like planet that
were all constructed to pass through Jupiter’s ac-

tual temperature at 1 bar, 166.1 K. A constant
hydrogen-helium ratio of 220:18 without heavier
elements was consistently assumed in all calcula-
tions to facilitate a direct comparison. The mea-
sured hydrogen-helium ratio for Jupiter’s atmo-
sphere is 220:15 (von Zahn et al. 1998), while
the protosolar hydrogen-helium ratio (presumed
equal to Jupiter’s bulk ratio) corresponds to about
220:21 (Lodders 2003); thus our adopted ratio is
a compromise between these values. This implies
that Fig. 11 represents Jupiter’s interior only ap-
proximately because typical models include both
a small fraction of heavier elements and a non-
constant helium fraction for the molecular and
metallic layers in order to match various obser-
vational constraints such as mass, radius, and
the gravitational moments J2, J4, and J6. Such
modifications change Jupiter’s interior pressure-
temperature profile by a small amount, on the or-
der of 3%. For Saturn, a larger change is expected
but nevertheless the interior pressure-temperature
profiles for all objects discussed in this article were
constructed with the simplifying assumption of a
constant hydrogen-helium ratio of 220:18 without
the consideration of heavier elements.

The comparison in Fig. 11 reveals sizable dis-
crepancies (Militzer & Hubbard 2009) in temper-
ature between the different curves, although one
might expect all DFT-MD-based curves to agree
in the displayed T-P region because the underly-
ing EOS data there were generated by the same
method. See, however, the discussion (a) below.
At a low pressure of 10 GPa, the Nettelmann
et al. (2008) work predicted temperatures that
were 5.7% (210 K) higher than our new TDI re-
sults. At a pressure of 4000 GPa near Jupiter’s
core-mantle boundary, the deviation amounts to
19% (3300 K). In the Nettelmann et al. (2012)
work, the temperature was overestimated by 7.5%
(300 K) and 15% (2450 K) at 10 and 4000 GPa, re-
spectively. The associated revision of the adiabats
introduced a more pronounced reduction in slope
into the region of molecular dissociation from 20-
70 GPa. In our Militzer et al. (2008) article, we
underestimated the temperature at 4000 GPa by
18% (2450 K).

There are three main reasons for the deviations
that all relate to approximations that are avoided
in the TDI method: a) inaccuracies in the ana-
lytical EOS, b) approximations when the adiabats
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are derived from the ab initio pressures and inte-
nal energies, and c) linear mixing approximation
when the properties of a mixture is derived from
simulations of pure hydrogen and helium.

a) Only the TDI method presented here allows
one to directly determine absolute entropies. In
Militzer et al. (2008); Nettelmann et al. (2008,
2012), the authors instead relied on the pressures
and internal energies from standard DFT-MD sim-
ulations to determine the shape of the adiabats
in the region from 10–4000 GPa where such sim-
ulations work efficiently. An separate analytical
technique was needed to determine the starting
point of the adiabat at ∼10 GPa. The analyt-
ical fluid variational theory used in the (Nettel-
mann et al. 2008, 2012) articles to anchor the
adiabats is not compatible with our TDI results,
which explains the deviations of the adiabats at
10 GPa. Thus, the descrepancies at low pres-
sure are not a consequence of the ab initio sim-
ulations but rather the result of inaccuracies in
the anchor point, which then also affect the adia-
bats at higher pressure that are constructed from
ab initio results. In (Militzer et al. 2008), the
SC model was used as a starting point, which is
relatively good agreement with the TDI results.
b) When the adiabats are constructed from the
ab initio pressures and internal energy (Militzer
2009), (∂T/∂V )S = −T (∂P/∂T )V / (∂E/∂T )V ,
one needs P and E on a fine grid of density-
temperature points for interpolation. In practice,
one can only perform a finite number of simula-
tions and results have finite-size and statistical un-
certainties. An insufficient number of simulations
is the reason why the temperature on Jupiter’s adi-
abat at 4000 GPa was underestimated in our 2008
work and why the shape of the adiabat was not
accurately determined in Nettelmann et al. (2008)
work. Finally c) the linear mixing approximation
in Nettelmann et al. (2008, 2012) has some im-
pact on the adiabats. However, this is a small
effect compared to a) and b). With knowledge
of our TDI results, Nettelmann & Redmer (2013)
changed the anchor point and constructed the se-
lected adiabat as shown in Fig. 11. The agreement
improved substantially but a small deviation of
−3% at 10 GPa and +2.5% at 4000 GPa remained,
which can be attributed to points b) and c).

6. Mass-Radius Relationships

The vexing problem of radius anomalies of
transiting giant planets (Burrows et al. 2007)
has continued with the addition of more objects
(Laughlin et al. 2011). Figure 12 shows measure-
ments posted in the online Exoplanet Encyclopae-
dia (Schneider et al. 2011) as of late 2012 and
different theoretical curves that we will discuss be-
low. Briefly, the problem arises from a significant
population of exoplanets that have radii too large
to be explained by thermal distension from re-
tained primordial heat, and there is a further pop-
ulation with radii well below those expected for
primarily H-He composition even at zero temper-
ature. Any point that falls below the S = 6 kb/el.
curve can be explained by invoking the presence of
a rocky core and/or admixture of heavy elements,
which reduces the radius for given mass (Miller &
Fortney 2011). But it is not so simple to classify
the population of anomalously distended giant ex-
oplanets, for the degree of distension depends on
such factors as the planet’s age and degree of irra-
diation from the host star (Fortney & Nettelmann
2010), and possible additional heating mechanisms
such as ohmic dissipation (Batygin et al. 2011).

In order to most clearly exhibit the differences
in predicted radius between the DFT-MD simula-
tions and analytical SC model, we model a planet
of mass M as a H-He object of constant entropy S
and fixed helium fraction of Y = 0.245 with nei-
ther a rocky core nor heavy element component in
the gas envelope. Since we do not have DFT-MD
simulation data at very low densities, we switch
back to the SC model below 0.0670 g cm−3, the
lowest density of the free energy fit to our DFT-
MD data.

As is well known (Chandrasekhar 1957), for-
mally such an object has a precisely defined ra-
dius where the temperature T , mass density ρ,
and pressure P simultaneously go to zero. In a
real object, the ideal-gas outer layers cannot per-
sist in such an isentropic state and instead the
temperature reaches a finite limit set by the ef-
fective temperature for the radiation balance in
the outer layers. The radius as measured by tran-
sit observations also depends on sources of slant
opacity in these outer layers. As explored by Bur-
rows et al. (2007), the value of such a radius can
vary by several 0.1RJ , depending on the atmo-
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Fig. 11.— Adiabats from different calculations to
approximately represent Jupiter’s interior. A he-
lium mass fraction of 0.245 was assumed in all cal-
culations.

Fig. 12.— Radius R (in units of RJ = 70000
km vs. mass M (in units of MJ = Jupiter’s
mass). The solid data points are measurements
of transiting exoplanets. The curves show the
R(M) relation predicted from two EOS calcula-
tions (solid curves are for DFT-MD simulations,
dashed curves are for the SC model) for fixed en-
tropies of S = 6, 6.8 (Saturn-like; heavy curve), 7
(Jupiter-like), 8, 9, 10, 11, and 12 kb/el. The three
open data points denote Saturn, HD 209458b, and
Jupiter from left to right.

spheric model. Adjusting the parameters control-
ling the atmosphere can move a model closer to
agreement with objects of inflated radii, but some-
times a mismatch remains. A major result of the
present paper is that differences in the EOS alone
can also lead to radius changes of several 0.1RJ .
Because we consider only strict-adiabatic models,
the deviations that we point out are entirely due
to differences in the EOS at high pressure. In Fig-
ure 13, we exhibit these differences for various en-
tropies. For entropy values up to 9 kb/el., the
DFT-MD calculations consistently predict smaller
planet radii than the SC model, which is a direct
consequence of the density enhancement on the
adiabats around 100 GPa illustrated in Figs. 10
and 11. Figure 10 also shows that the DFT-MD
and SC adiabats for 10, 11, and 12 kb/el. cross
over in the density range from 0.15 to 0.7 g cm−3.
This is the reason why the DFT-MD calculation
predict larger planet radii than the SC model for
massive planets with M > 0.5MJ but significantly
smaller radii for light planets. The deviations be-
tween the DFT-MD and SC predictions in Fig. 13
reach values up to approximately 0.4 Jupiter radii.

The exoplanet HD 209458b (middle open data
point in Figure 12) fortuitously falls near an en-
tropy S ≈ 9.5 kb/el. and mass M ≈ 0.7MJ where
∆R ≈ 0. Nevertheless, the interior T -ρ and P -ρ
profiles in figures 14 and 15 differ significantly be-
tween the DFT-MD and SC EOSs. These figures
also compare interior profiles for simplified (pure
H-He mixtures on an adiabat) models of Jupiter
and Saturn.

Figure 16 shows differences in evolutionary be-
havior of our simplified planetary models. This
figure plots the value of the central temperature,
Tcentral, vs. the central density, ρcentral, for a range
of adiabats and masses. During the evolution of
a planet of constant mass, its central density in-
creases monotonically while its central tempera-
ture exhibits a maximum. During the initial con-
traction, the temperature in the center increases at
first as the material is subjected to increasing pres-
sure. When a degenerate interior state is reached,
the contraction ceases and the whole planet starts
to cool. According to DFT-MD simulations the
maximum temperature reached is up to 10 000 K
lower than predicted by the SC model. This devi-
ation may have consequences for the evolution of
cores in giant planets that remain to be explored.
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7. Conclusions

This paper provides an equation state table for
hydrogen-helium mixtures in giant planet interiors
that was derived from ab initio computer simula-
tions. The combination with an efficient thermo-
dynamic integration technique enabled us to calcu-
late the absolute entropy and free energy directly,
in addition to pressure and internal energy that
follow from standard simulations.

Our complete EOS table with 391 density-
temperature points as well as a thermodynamially
consistent free energy fit is included in this publi-
cation so that our EOS can be easily incorporated
in future models for giant planet interiors.

We have identified significant deviations for the
Saumon and Chabrier EOS models. The new
DFT-MD EOS causes low-entropy giant-planet
models (S ≤ 8 kb/el.) to shrink in comparison
to SC models by up to 0.08 Jupiter radii. But
for hot giant planets with mass exceeding 0.5MJ

and with interior entropy values in the range from
10−12 kb/el., the DFT-MD simulations predict
significantly larger radii. The correction to the
SC model reaches 0.4 Jupiter radii for the hottest
planets. Thus, the revision suggests that some
of the most inflated giant exoplanets are at lower
entropies than was previously inferred. Our re-
vision could ameliorate the “inflated giant exo-
planet” discrepancy to some extent but perhaps
not for HD209458b. The matter is to be revisited
with detailed evolutionary calculations based on
our revised EOS.

This work has been supported by NASA and
NSF. Computational resources at NCCS were
used. We thank N. Nettelmann and R. Redmer for
sharing their adibats for a 220:18 hydrogen-helium
ratio.
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Table 1

Equation of state derived from DFT-MD simulations.

rs Density Temperature Pressure Internal Energy Helmholtz Free Entropy

(a0) (g cm−3) (K) (GPa) (Ha/el) Energy (Ha/el) (kb/el)

0.70 8.9658 5000 17713.9(3) 0.69251(3) 0.641237(7) 3.238(3)
0.80 6.0064 5000 8170.3(4) 0.41280(4) 0.351520(11) 3.870(3)
0.90 4.2185 5000 4064.5(3) 0.24343(4) 0.173088(24) 4.443(4)
1.00 3.0753 5000 2141.5(2) 0.13726(3) 0.058946(16) 4.946(3)
1.10 2.3105 5000 1180.6(2) 0.06926(6) −0.016209(11) 5.398(4)
1.20 1.7797 5000 675.0(1) 0.02513(5) −0.066864(21) 5.810(4)
1.30 1.3998 5000 398.4(1) −0.00370(5) −0.101600(16) 6.183(4)
1.40 1.1207 5000 242.1(1) −0.02265(8) −0.12587(3) 6.519(7)
1.50 0.9112 5000 151.8(2) −0.03527(6) −0.14310(4) 6.810(6)
1.60 0.7508 5000 98.0(1) −0.04400(6) −0.15565(2) 7.051(5)
1.86 0.4779 5000 38.2(1) −0.05755(7) −0.17565(3) 7.459(7)
2.00 0.3844 5000 25.74(8) −0.06295(15) −0.18271(4) 7.563(12)
2.10 0.3321 5000 19.97(9) −0.06627(13) −0.18655(4) 7.596(11)
2.20 0.2888 5000 15.51(9) −0.0685(2) −0.19015(4) 7.683(16)
2.30 0.2528 5000 12.24(7) −0.0702(2) −0.19312(5) 7.765(14)
2.40 0.2225 5000 9.64(6) −0.0714(2) −0.19580(7) 7.855(17)

Note.—Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal.
A portion is shown here for guidance regarding its form and content.

Table 2

Coefficients of Free Energy Fit for the equation of state.

rs T coefficient
(a.u.) (a.u.) (a.u.)

∂F
∂T 1.75 0.001013 −8.67942×10−1

F 1.75 0.001013 −9.23942×10−2

F 1.75 0.003131 −9.76575×10−2

F 1.75 0.006512 −1.12223×10−1

F 1.75 0.011911 −1.44120×10−1

F 1.75 0.020533 −2.07646×10−1

F 1.75 0.034302 −3.23222×10−1

F 1.75 0.056290 −5.29287×10−1

F 1.75 0.091403 −8.92177×10−1

F 1.75 0.147476 −1.53056
F 1.75 0.237021 −2.64345
F 1.75 0.380018 −4.58672
∂F
∂T 1.75 0.380018 −1.41575×10+1

Note.—Table 2 is published in its entirety in
the electronic edition of the Astrophysical Jour-
nal. A portion is shown here for guidance re-
garding its form and content.
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