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Abstract. The central charge c of the Virasoro algebra is determined using its relation to 
the set of anomalous dimensions of the scaling fields for the critical anisotropic Heisenberg 
chain. The results obtained by exactly solving the Berhe ansatz for N S 4  are compared 
with the standard procedure of calculating c in the whole region of anisotropy. For odd N 
the system is no longer modular invariant and the analogous averaging leads to an 
anisotropy-dependent function which has been calculated. 

1. Introduction 

Two dimensional conformally invariant systems of statistical mechanics (e.g. 6-vertex- 
models) are characterized by their central charge c and a set of operator dimensions 
{x,~}, the eigenvalues of the dilatation generator Lo +in of the corresponding Virasoro 
algebras with central charge c. Consider now the partition function Z=Tre-oH of a 
one-dimensional quantum system of length N (e.g. the anisotropic Heisenberg model 
X X Z ) .  In the limit 8 - w  this expressioncan be viewed as the partition function of a 
strip of infinite length and finite width N .  For periodic boundary conditions. which are 
assumed throughout the paper, this corresponds to a cylinder in space direction N .  It 
follows now that at criticality for large N the Hamiltonian H of the quantum system 
can be mapped according to 

The parameter U is an effective velocity rescaling the energy and can be analytically 
determined by a low-energy dispersion relation. The low-energy excitations are (in 
leading orders) completely given through c and {x"}: 

Here Ehw is the ground state energy and ELN1 stands for the energy of an excited state 
both with N sites. E r )  is the leading part (proportional to N) of the ground state 
energy for N+w (Affleck 1986, Blote et a1 1986). 
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The standard way of calculating the central charge c of a given system is via 
relation (1.2) which requires the exact ground state energy Eh' for moderately large 
values of N .  

It is straightforward to obtain c using the information of the whole spectrum of H 
expecting better results for smaller N than above. 

An important step in this direction has been made by Schiitz (1992) for modular 
invariant systems. He derived a relation between c and {x"} 

c=12 

n 

and checked for Ising and other models. Also comparing the standard way of 
calculating c (equation (1.2)) and its calculation via equations (1.4) and (1.3) through 
the knowledge of the whole excitation spectrum, Schiitz (1992) found that the latter 
works better starting with N=4. Of course there is no guarantee that this fact holds 
for other models. It seems now worthwhile testing relation (1.4) for models with a 
critical region where the {xJ depend on an additional parameter ('coupling constant') 
while c is a constant in the whole region. This has been done in the present paper for 
XXZ model and N=2,4.  The spectrum of the Hamiltonian can be determined 
analytically by the Bethe ansatz. The results for N = 4  are presented in detail in section 
2. In section 3 we compare the results for c in case of even N, while section 4 is 
devoted to N=3,  where modular invariance for our boundary conditions is no longer 
valid. Section 5 contains our conclusions. 

2. Anisotropic Heisenber model with N = 4  

For definiteness we use the Hamiltonian 
I N  
1 H=- c [ a",~+,+u+su,oV,+,+ A(u;u;+,- l)] 

"=I  
4 

wi thA=cosyandOGyandOsy<n .  
To obtain the spectrum of H one has to solve the Bethe ansatz equations 

j =  1,. . . , I  (2.2) 
' sinh(di-&+iy) 

K=l.k#j  sinh(di-A,-iy) 
- - 

for lG4N. Any of its solutions ai#& for j f k  corresponds to an eigenstate with 
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Tablel. The eigenstates of the XXZ Hamiltonian with N=? calcu+ted via t h e  Bethe 
ansatz technique. Bethe ansatz roots, energy. momentum and spin are shown. 

State {A} E p l&l s 

3+(8+c0szy)"' A + Z +  (A~+s)"' 
-2(A + 1) A+4+(A2+8)iJ2 0 0 0  

- A  n o 0  

in 
0 -  - 2A 3 2 0 1  

2 
in n 

-x+- - A  *- ~~0 1 2 2 

I-cosy ) 1 Acoth-' 

ir 
2 A T  

3 

4,s x 

I - (I + sin' y)"' 
s h y  

2 

I -cosy 

x=+tanh" 

in  in  A +2- (A2+ 8)"' 
A +4 - (A2+ 8)I' 

X+-  
2 

x = tanh-' 

0 0 2  -x+-  -2(A + 1) 6 

in 
7 .8  7 1 - A  0 1 2  

9,lO 0 - ( l + A )  

13.14 ''''' Atanh-'(tan$ OSys - A  

n l l  

n 
AT 1 1 

.. 
15,16 no2 0 0 2 2  

J I m A I  has to be restricted to being smaller than and ImA=$z must be set 
equivalent to Imd= -+n. The states with S,<O are produced just by counting any 
state with S,>O twice. 

The results of our calculation which, of course, may have been done earlier, are 
shown in table 1. 

In the last column of table 1 we attached a quantum number S to any state, 
obtained by continuing from A = 1 ( X w  model) where this number is conserved. The 
 results for y = 0 are given after the usual limiting procedure including the rescaling of A 
by y-l whereafter all states with Im A = +z disappear. This is in full agreement with the 
Bethe ansatz for XXX which gives the highest weights states only. 

The energies of all states are shown in figure 1, which shows the well known central 
symmetry with respect to the point A = 0. The accidental degeneration of the states 2, 
4 and 11 is due to the small N .  States 4 and 11 represent two triplets. The typical 
situation of such multiplets is given for the third triplet (states 3 and 9) and the 
pentuplet (states 6, 7 and 15), where all members cross at A = 1. 

For A 2 1 the (antiferromagnetic) ground state is a singlet (l), while for A S  - 1 
the two (ferromagnetic) ground states are states 15 and 16 (highest members of the 
pentuplet). 
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It is interesting to look for the Bethe ansatz solution in the region I A[ > 1, too. One 
can easily see that using the parameterization A = sgn A cosh ,' the new solutions are 
obtained from those of table 1 by the replacement x= -i-l(i-y). 

An effect worth mentioning occurs only for the two states 4 and 5. Taking for 
definiteness the sign plus for x in table 1 both 1 stay real as long as sinh(,')S 1 and 
coalesce at x=-$.. for sinh ,'= 1: For larger ,' they acquire imaginary parts of different 
signs I m l =  2 [cosh-'(sinhp)]/2 preserving their real parts. We have checked that 
throughout the whole region of A the energies of table 1 are correct as they are written 
as functions of A only. 

3. Calculation of central charge for N = 2  and N = 4  

With the results of section 2 we can now calculate c via equations (1.3) and (1.4). 
Before doing so we demonstrate how equation (1.4) works if the exact dimensions are 
used. The set of primary operators is given through 

n2 m2 
x",m =- (1 - v )  + - 2 2(1-v) (3.1) 

by Alcaraz ef a1 (1988a) where for even N ,  n and m are integers. Parameter v is 
defined through v = y/n. We shall consider only primary and secondary operators with 
X , S 2 .  

For v=O we have the following primary operators (in brackets their multiplicity is 
indicated): 0(1), )(4), 1(4), 2(4) leading to c=0.954900. Including the secondary 
operators 1(2), %@), 2(13) gives c=0.999 889. 

For v = p  (A=O) one has: 0(1), $2), 1(4), 34) ,  2(4) for the primary operators and 
c=0.954902. Including 1(2), 3(4), 2(13) gives c=0.999728. 

Approaching v + l  one has to take into account an infinite set of primary 
operators. We therefore expect troubles for finite N if y +JC - E. From a physical point 

Figure 1. The energies of all eigenstates of X X Z  Hamiltonian with N = 4  sites calculated 
via the Bethe ansatz technique. For the classification of the eigenstates see table 1. 
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Fig-2. The effective velocity v=(n/Z)(sin y i y )  as a function of the anisotropy para- 
meter A continued to non-critical values of lAlZ1. The edge singularity is located at 
A=-1 .  

of view (phase transition antiferromagnetic/ferromagnetic) this is no surprise, of 
course. 

In the paper of Schiitz (1992) it has been mentioned that it is useful to consider the 
weighted average (x.) for arbitrary A. The only problem to overcome then is caused 
by the appearance of the parameter U in equation (1.3). For 1A1<1 one has 

sin(y) n 
Y 2’ 

y=- - 

It is straightforward to assume for A > 1 

sinh(g) n 
7 2  

y=- - (3.3) 

while for A < - 1 the continuation is not quite clear. We therefore have adopted 

sinh(j) n 
y=- - 

(j+n) 2 (3.4) 

(remember A = - cosh y ) .  The function u(A) is now continuous at A = - 1 but has still 
a singularity which seems to be unavoidable, as oen can see from figure 2. 

would lead to a drastic 
change of the resulting central charge in the region A C  - 1. On the other hand one 
has to keep in mind that any method for calculating c via finite size data fails near the 
singularity point A = - 1 (in contrast to the other singularity at A = 1). 

Our numerical results for N = 2  and 4 are given in table 2 and figures 3, 4, 5 and 6 .  
They are compared with the result of the standard procedure for determining c by 
finite-size corrections using equation (1.2). For those functions we have extended 
equation (1.2) for A2.1. For A <  - 1 one obtains a ‘central charge’ identical to zero. 
To distinguish both functions we call the first one c, (a for average value) and the latter 
c, ( U  for vacuum state). 

Replacing in the denominator of formula (3.4) p + n by 
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Table% The calculation of the central charge for the XXZ equation (1.4) (second and 
third column) and equation (1.2) (fourth and fifth column) as function of A. 

C. 5 c, C” 

A N = 2  N-4 N=2 N = 4  

1 0.925655 1.246739 1.492387 1.106130 
- (3)”2 0.925333 1.243873 1.490873 1.104848 

2 

2 
(2)“Z 

t 
- 0.924120 1.233302 1.485095 1.101275 

0.921256 1.209255 1.470210 1.094664 
0,091643 1.120454 1.388010 1.076962 0 

-f 0.989731 1.014521 1.181825 1.035786 

_- (2”” 0,870581 0.975 164 1.006 151 0.966450 
2 

2 
(3)’” _- 0.767 916 0.9n 682 0.763 E49 0.814 525 

Comparing figures 2 and 3 with the exact value c = 1 ( 1  A I < - 1) one can see that 
(1.4) already works qualitatively well for N=2, the improvement for N=4 is not so 
significant. Both functions show a similar behaviour (for A > - 1 ) .  Therefore one 
cannot say that formula (1.4) works better than (1.2) for N=4 as in case of the king 
model. There is still the possibility that it does so in some small region (or even in one 
point) of A. Our data suggest that this may happen in the vicinity of point A = - d / 2  
(Ising model). The asymptotic of A - - 1  are all of the form c - ( A + ~ ) ” ~ .  The 
coefficient does not only depend on N but is different for different ways of calculating 
c .  This is not surprising because in one case it depends on all energies which states 

A 

Figure 3. The finite-size determination of central charge c of X X Z  model as functions of 
theanisotropyparameter AforN=2. Thedottedcurvecorresponds toc,,calculatedusing 
the Virial theorem while the dashed curve corresponds to c,calcuIated using correction to 
vacuum energy. 
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Figure4. The same 3s figure 3 on a larger scale. 

cross at A = - 1  and in the other, on E r ) .  For A + m  the asymptotics.coincide for 
N = 2  and 4 separately: 

and 

(Besides the ground state energy El it depends either on E3 or on E r ) . )  We were not 
able to prove that this fact is not an accident. 

In the region A < - 1 figures 3 and 5 show a maximum for c, which one should 
consider to be spurious. For increasing N i t  becomes sharper and moves towards the 
singularity at A = - 1. The asymptotics for A 4 - m are not connected with the 
particular choice of formula (3.4), c, vanishes faster (we found 
c=In(-A)*(-A)-”~ than in the case A + m .  We suggest that for N =  m the 

A 

Figure 5. The same as figure 3 for N = 4  
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Figure6. The same as figure 5 on a larger scale. 

singularity is of the form that c goes from zero to one immediately when passing this 
point from left to right. On the other hand we expect c to stay smooth at the point 
A = I  ( N = m ) .  

4. The case of odd N 

It is well known that for odd N no ground state exists, an independent determination 
of c via (1.2) therefore must fail. 
On the other hand (1.4) cannot be used, either. This is due to the fact, that 

modular invariance is no longer valid in this case. The set of {xn} is still given by 
formula (3.1) with both n and m half-integers. Transforming the two-dimensional 
partition function in the usual way one would obtain a sign factor (- 1)”( - 1)”’ 
excluding modular invariance. (Modular invariance can be maintained if antiperiodic 
boundary conditions are introduced. The picture is still more complicated because of 
the sign factors. We intend to study this in a further work). 

Nevertheless, it seems worthwhile demonstrating the consequences of the non- 
validity of modular invariance for odd N .  We therefore have calculated the RHS of 
(1.4) throughout the critical region for N= 3 but this is no longer expected to equal the 
central charge c. We for this reason introduce the new notation d(A) .  Equation (3.1) 
gives the operator dimensions with respect to the ’true’ ground state. We therefore 
have used as ground state energy 

Eg’=3?Eg’+&?b4’ 

that is the average energy of the two neighbouring ground states for even N .  
The exact function d(A)  c m  be obtained directly via (3.1), the result is called dc (t 

is for theoretical). On the other hand this compares with the result of our finite-size 
data via formula (1.3) called de (e for experimental) for N =  3. d. has to approach d,  in 
the thermodynamic limit. 

For the sake of clearness we briefly summarize the picture of states after having 
solved the Bethe ansae equations. There is a quartet consisting of two states with 
L=*iix(E=,l - A )  and two ferromagnetic ground states. The state with lowest energy 
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Table 3. The calculation of the analogue of the central charge d. for N = 3 compared with 
the theoretical value d, (second and third column) compared with the finite-size correc- 
tions to the one-hole-state c,. and clr (fourth and fifth column) as functions of A. 

1 4.398533 3.089 804 
+(3)" 4.402614 3.155656 
@)'" 4.420 179 3.253 896 

4.449 911 3.416 107 
4.799 791 4.045 068 0 

-i 5.582028 5.502904 
-+(2)"' 5.357690 7.001 165 
-+(3)In 3.550 148 9.999 998 

t 

2.113549 2 
2.119240 2.05 
2.142 355 2.125 
2.205315 2.25 
2.606555 2.15 
3.956840 4 
5.593 241 5.375 
9.110045 8.25 

is four times degenerated (2 doublets) with E= -3(1+2A) (1-hole state). It corre- 
sponds to the two solutions 

tan (y /Z)  2z 
for 0 < y < - 

,=&tar&'( ) 3 

and 
2 z  
3 for-<y<?r. 2. = f tanh-l( fi cot i) 

The energy is given by the same function as above. Results are presented in table 3 
and figures 7 and 8. 

Numerical calculations have shown that the inclusion of the secondary operators 
shifts d by a constant 

Ad= 0.045068 

-..--._ .,__ -..- ---___ 

A 

Figure I. The analogue of the central charge in case of odd N as function of the anisotropy 
parameter A for N=3 given by the dotted curve. The dashed curve corresponds to its 
theoretical value for N-tm calculated by summing up the exact operator dimensions. 
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Figures. The comparison of the finite-size correction to the first excited state for N = 3  
(dotted curve) to its lheoretical value (dashed m e )  as iuction of A. 

(This effect is already included in thepresented data.) The two curves in figure 7 show 
only a slight coincidence. The diEferent behaviour near the point A-+ - 1 is not so 
surprising, d. shows the same singularity (a (A + 1)”) as for even N (see above). In 
the other region the difference between d. and d, is significantly higher than for N = 2  
which we understand as a hint for a hidden compensation mechanism working only for 
the ‘true’ central charge. A further test is possible where a modified version of (1.2) is 
used. For odd N we put in E{” instead of EhN), the energy of the lowest state (1 hole) 
and omit the sign - . The resulting ‘c’ we call cle, being compared with its theoretical 
value for large N ,  clt 

1 2  3 c ----y+- 
“ - 2  3 2(1-v) (4.1) 

according to standard philosophy by Woynarovich (1987). The results are included in 
table 3 and figure 8. 

We are surprised by the strikingly good agreement between cIc and clr, which is 
even better than the corresponding data for N = 4  (table 2) .  Near A +  - 1 they show 
qualitatively the same behaviour ( = ( A +  1)-“*) but the coefficients are different. 

We cannot explain why our results for c, do not fit with those of Alcaraz et ai 
(1988b) (see e.g..formula (3.22)). On the other hand they fit very well in the isotropic 
case with the numerical data of Fabricius et ai (1991). 

5. Conclusions 

On the basis of our results we can state that the method of Schiitz works in the case of 
the XXZ model considered above. The aim of obtaining better numerical coincidence 
for very small N compared to the standard method of calculating c could not be 
verified in general. Our results clearly show that one may expect such an effect only in 
some parts of the whole critical region. Because those parts are not known apriori this 
fact is of no great use for practical calculations. The method definitely fails near the 
phase transition point A = - 1 but works well near the Kosterlitz-Thouless point 
A = 1 which fits well with standard knowledge. 
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Comparing the results of both methods for N =  2 and N =  4 for arbitrary anisotropy 
we find it most remarkable that the basic physical effects, of the system are reflected in 
ow curves. We here have in mind especially the' smooth transition at the 
Kosterlitz-Thouless point and the singularity at the phase transition point. This leads 
us to the conclusion that combining just two independent methods one obtains a lot of 
physical important information from a very small number of sites. We believe that this 
is due to the high symmetry of the model (conformal and modular). To obtain more 
information on that fundamental fact one has to consider correction terms and to 
clarify compensation mechanisms. 

The case of odd N is helpful in preventing too f2r-reaching speculations. The loss of 
modular invariance drastically changes the picture. No physical reliable information 
can be obtained from the function d(A),  which is a clear signal to be careful with 
general consequences. We wish to stress that some features of the system with an odd 
number of sites are still correctly reproduced with N = 3  sites. This has been 
demonstrated for example, for the energy of the 1-hole-state. 
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