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Abstract

Path integral Monte Carlo (PIMC) simulations are employed to calculate the momen-
tum distribution of the homogeneous electron gas at finite temperature. Open paths
are introduced to sample off-diagonal elements of the real-space density matrix. It is
demonstrated how the restricted PIMC method can be extended to incorporate open
paths in order to allow for the simulations in fermionic systems where a sign problem
is present. The computed momentum distribution shows significant deviations from be-
havior of free fermions when strong correlations are present but agrees with predictions
from variational methods.

Keywords: path integral Monte Carlo, momentum distributions, first-principles
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1. Introduction

The momentum distribution is one of the fundamental properties of a quantum sys-
tem. It can be directly measured by inelastic scattering or by recording the trajectories of
particles. The first method has been used to determine the condensate fraction in super-
fluid helium while the latter was used to demonstrate that Bose-Einstein condensation
of supercooled alkali atoms in magnetic traps had been achieved.

In this article, we calculate the momentum distribution of interacting fermions at
finite temperature with restricted path integral Monte Carlo (PIMC) simulations. We
will illustrate how the fermionic momentum distribution evolves as a function of tem-
perature. At high temperature well above the Fermi temperature, TF , the momentum
distribution very closely resembles a Maxwell-Boltzmann distribution. With decreasing
temperature, Pauli exclusion effects become important and the Fermi-Dirac distribution
must instead be employed. While it is straightforward to study this transition in systems
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of noninteracting particles with analytical methods [1], the derivation of the momentum
distribution of interacting bosons and fermions typically relies on computer simulations.
Interacting bosons (4He) at finite temperature have been studied with PIMC simulations
previously [2]. Ground state quantum Monte Carlo simulations have been employed to
derive the momentum distribution of the homogeneous electron gas at zero tempera-
ture [3]. In this article, we use PIMC simulations to perform such calculations at finite
temperature. It is the combination of fermionic and interaction effects that make this
a challenging calculation. Conversely for systems of classical particles, the degrees of
freedom in coordinate and momentum space can be separated and Maxwell-Boltzmann
momentum distribution emerges regardless of the interactions. For quantum systems,
this separation is no longer possible because the position and momentum operators do
not commute. That is why we employ PIMC simulations in this article to derive the
momentum distribution of interacting electrons.

Since momentum and positions are conjugate variables in quantum mechanics, it is
necessary to introduce open paths to sample off-diagonal density matrix elements needed
for the momentum distribution. We discuss how the restricted path method can be ex-
tended to simulations with open paths. While all negative signs can be eliminated from
fermionic simulations with closed paths, some negative contributions are unavoidable in
simulations with open paths. However, the simulations are stable and signal-to-noise
ratio remains high for all temperatures under consideration. We illustrate how the mo-
mentum distribution gradually changes from Maxwell-Boltzmann to Fermi-Dirac type
with decreasing temperature. We find that correlations among the electrons prevent an
ideal Fermi step function from emerging in the limit of low temperature because plane
waves are not the eigenstates of a system of interacting particles. We performed simu-
lations at two different densities to illustrate how strongly the correlation effects affect
the momentum distribution.

2. Path integral Monte Carlo

The basic techniques for simulating bosonic quantum systems of bosons was devel-
oped in Ref. [4] and reviewed in Ref. [2]. Subsequently the algorithm was generalized
to fermion systems using the restricted path integral method. The first results of this
simulation method were reported in the seminal work on liquid 3He[5] and dense hy-
drogen [6]. A review of the algorithm is given in Ref. [7]. In subsequent articles, this
method was applied to study hydrogen [8, 9, 10, 11, 12], helium [13, 14, 15], hydrogen-
helium mixtures [16] and one-component plasmas [17, 18, 19]. Recent work on the one-
component plasma using this and related methods were presented in [20, 21, 22, 23].
In recent years the method was extended to simulate plasmas of various first-row el-
ements [24, 25, 26, 27, 28, 29] and with the development of Hartree-Fock nodes, the
simulations of second-row elements became possible [30, 31, 32, 33].

In PIMC simulations of thermodynamic properties, one only samples the diagonal
elements of the many-body density matrix. Such calculations involve closed paths in
imaginary time. Following the procedure developed for the computation of the mo-
mentum distribution of bosonic systems [2], we extend this approach to restricted path
simulations for fermions. Similarly the momentum distribution is obtained by sampling
off-diagonal elements of the many-body density matrix. This requires PIMC simulations
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with one open path. We explain how this path is sampled efficiently, which permutations
need to be considered and how the path restriction is applied.

2.1. Restricted paths technique

The thermodynamic properties of a quantum many-body system can be derived from

the thermal density, ρ̂ = e−βĤ with β = 1/kbT . For the purpose of performing Monte
Carlo simulations, we express this operator in position space,

ρ(R,R′;β) ≡ 〈R |ρ̂|R′〉 =
∑
s

e−βεs Ψ∗s(R) Ψs(R
′) , (1)

where Ψs are the many-body eigenfunctions and εs the corresponding eigenvalues. R =
{r1, . . . , rN} represents a set of coordinates of N particles in d dimensions. The density
matrix of a bosonic (B) or fermionic (F) system, ρB/F(R,R′;β), can be constructed
from the density matrix for distinguishable particles (D) by a sum of permutations, P,
to project out states of the corresponding symmetry,

ρB/F(R,R′;β) =
1

N !

∑
P

(±1)P ρD(R,PR′;β) , (2)

where (±1)P denotes the sign of the permutation. Using the operator identity, e−βĤ =

(e−τĤ)M , the density matrix at temperature T can be expressed in terms of density
matrices at a higher temperature MT . This leads to a path integral in imaginary time
with M steps of size τ = β/M ,

ρB/F(R,R′;β) =
1

N !

∑
P

(±1)P
∫
. . .

∫
dR1 dR2 . . .dRM−1

ρD(R,R1; τ) ρD(R1,R2; τ) . . . ρD(RM−1,PR′; τ)

=
1

N !

∑
P

(±1)P
∫

R→PR′

dRt e
−S[Rt] , (3)

where S represents the action of the path Rt beginning at R and ending at PR′. In
calculations reported here we use the pair density matrix [4, 34, 35] for the action arising
from the pair potentials. For bosonic many-body systems, the integrand is nonnegative
and this expression can be efficiently evaluated using Monte Carlo techniques [4, 36, 2].
For fermions, a straightforward evaluation of this expression is impractical because there
are many positive and negative contribution that nearly cancel. While one can still use
this expression to numerically study systems of a few fermions, the efficiency rapidly
decays with increasing number of particles and decreasing temperature, ∼ e−βN . This
is referred to as the fermion sign problem.

In Refs. [37, 5, 7], it was shown that the fermion sign problem in imaginary time
path integrals can be solved by restricting the path integration to a subset of the entire
configuration space. One introduces the concept of fermion nodes that present the surface
where the fermion many-body density matrix vanishes, ρF (R,R′; t) = 0. The nodes are
employed to confine the paths, R(t), to regions where the density matrix is nonzero,
ρF (R∗,R(t); t) 6= 0. R∗ is called the reference point. It defines the allowed region,
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Υ(R∗), for the paths to travel in {R, t} space. The fermionic density matrix is then
given by the restricted path integral,

ρF (R∗,R′;β) =
1

N !

∑
P

(−1)P
∫

R(t)=R∗→PR′∈Υ(R∗)

dRt e
−S[Rt] , (4)

where one sums over all permutation of identical particles and integrates over all paths
that do not cross the nodes. By introducing this nodal restriction, one effectively cancels
negative and positive contributions to the path integral. When diagonal matrix elements
are computed, all negative contributions are cancelled against a subset of the positive
contributions. Thus only positive contributions remain to enter the calculation of ther-
modynamic averages 〈O〉, like pressure, kinetic, potential and internal energy as well as
pair correlation functions:

〈O〉 =
1

Z

∫
dR ρ(R,R;β) 〈R| O |R〉 , (5)

Z =

∫
dR ρ(R,R;β) . (6)

Such computations require only simulations with closed paths that originate from a
point R and terminate at the original or permuted set of coordinates, PR. The nodal
restriction eliminates all contributions from odd permutations, which would otherwise
enter with negative weights, because their paths violate the nodal restriction an odd
number of times.

A complete cancellation of the negative terms is only achieved for the computation
of diagonal density matrix elements. For the calculation of off-diagonal elements, some
negative contributions enter even into the restricted path method. Nevertheless the
weight of these contributions is much less than that of the positive terms as we will
illustrate below. The restriction gives rise to an efficient numerical algorithm that scales
favorably with increasing number of particles, similar to that for bosons.

The expression in Eq. 4 is exact as long as the nodes of the density matrix are known
exactly [37]. However, the many-body density matrix is only known in a few cases, e.g. for
noninteracting particles. In practice, one introduces a trial density matrix ρT(R,R′;β)
in order to approximate the nodes of the real fermionic density matrix. This introduces
an uncontrolled approximation into the calculation of all observables. However, for many
fermionic systems this technique has been shown to work well.

The standard form of the fermionic trial density matrix is a Slater determinant of
single particle density matrices,

ρT (R,R′;β) =

∣∣∣∣∣∣
ρ[1](r1, r

′
1;β) . . . ρ[1](rN , r

′
1;β)

. . . . . . . . .
ρ[1](r1, r

′
N ;β) . . . ρ[1](rN , r

′
N ;β)

∣∣∣∣∣∣ . (7)

Often one neglects the interactions when the single particle density matrices are derived

ρ
[1]
0 (r, r′;β) = (4πλβ)−d/2 exp

{
− (r− r′)2

4λβ

}
, (8)
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where λ = h̄2/2m. However, PIMC simulations with variational [38] and Hartree-Fock
nodes [30] have also been performed. Interaction effects can be introduced with the
backflow method [37, 7].

At high temperature, interaction effects are small and the free particle nodes provide
a very accurate representation of the nodal structure. With decreasing temperature,
interaction effects become more important and consequently the error increases that
results from employing free particle nodes [10]. One can improve the nodal approximation
by using the dual-reference point method [7] that we will use throughout this work. In this
approach, the time argument in the nodal restriction, ρT (R∗,R(t); t∗) 6= 0 is modified to
become the smallest difference in imaginary time to the reference point, t∗ = min(t, β−t).

How sensitive the computed thermodynamic averages are to the type of nodal approx-
imation depends on the magnitude of the interactions in the system under consideration.
Generally, one expects free particle nodes to work very well at high temperature and
if correlation effects are weak. Also, when particles are localized like the electrons in
molecular hydrogen or particles in a Wigner crystal, the effect of the nodes is reduced
and the type of nodal restriction is not important.

An additional approximation arises from the evaluation of the action for a non-zero
time-step τ > 0 with an assumed restriction. The restriction has the form of a many-
body (i.e. not pairwise) hard wall potential. Simply rejecting node-crossing paths (the
primitive approximation) leads to an error in the energy of order τ1/2. We use an
approximate form of the action based on the image method [7]. The distance of the
path from the node is calculated using a Newton estimate. With this form for the
fermion action, the kinetic energy has an error of order τ3/2 and is quite large for weakly
correlated systems such as the electron gas for small rs. Other quantities, such as the
single particle density matrix are much less sensitive to this time-step error.

2.2. Computation of the momentum distribution

The single-particle momentum distribution for Nσ particles in spin state, σ, is defined
as,

nσ(k) =
(2πh̄)d

Ω

〈
Nσ∑
j=1

δ(p̂j − h̄k)

〉
, (9)

where Ω is the volume of the simulation cell. The normalization for a finite system and
in the thermodynamic limit respectively is given by,∑

k

n(k) = Nσ ,
Ω

(2π)d

∫
dk n(k) = Nσ . (10)

Inserting 〈R|P〉 = e−iR·P/h̄/(2πh̄)Nd/2, one finds,

n(k) =
1

ZΩ

∫
dRdR′dP 〈R|ρ̂|R′〉 e

iP·(R−R′)/h̄

(2πh̄)(N−1)d

Nσ∑
j=1

δ(pj − h̄k) (11)

=
Nσ
ZΩ

∫
dRdr′1e

i(r1−r′1)·kρ(r1, . . . , rN , r
′
1, r2, . . . , rN ). (12)

We assumed all particles are equivalent and particle 1 has spin σ. Consequently, n(k) is
given by the Fourier transform of the single-particle reduced density matrix (SPRDM),
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n(s),

n(k) =
Nσ
Ω

∫
ds e−iks n(s) , (13)

n(s) =
1

Z

∫
dR ρ(r1, r2, . . . , rN , r1 + s, r2, . . . , rN ) . (14)

Note that by the definition n(s = 0) equals 1.
Classical particles have a Maxwell-Boltzmann momentum distribution given by

n(k) =
Nσ
Ω

(4πλβ)d/2 exp
{
−βλk2

}
, (15)

n(s) = exp

{
− s2

4λβ

}
. (16)

The momentum distribution of an ideal Fermi gas with one spin state in 3 dimensions
at T = 0 is a Fermi function,

n(k) =

{
1 for k ≤ kF with kF = (6π2Nσ/Ω)1/3

0 for k > kF
(17)

n(s) = 3/x3 [sin(x)− x cos(x)] with x = s kF . (18)

In this case, the free fermion SPRDM decays algebraically like cos(s kF )/s2.
The probability distribution, n(s), can be computed from PIMC simulations with one

open path. The vector s is the separation of the two open ends. Methods developed for
bosonic systems [2], such as liquid 4He, carry over directly to fermionic path integrals,
except for the nodal restriction.

During the PIMC simulations, n(s) is recorded in form of a histogram. The separation
of the open ends, s, of a particular configuration is added with the weight given by the
sign of the permutation, P. Even with the restriction, there are odd permutations that
contribute to the Monte Carlo averages with negative weight. At separations where n(s)
is negative, odd permutations outweigh even permutations. The algebraic decay of n(s)
requires long exchange cycles, on the order of the number of particles. In restricted
PIMC simulations, there is a direct relation [7] between long exchange cycles and the
discontinuity of n(k) at k = kF .

2.3. Example of two free fermions

In order to illustrate the restricted path integral technique, we discuss the simplest
fermionic system: the case of two identical fermions. The density matrix ρT(r1, r2, r

∗
1, r
∗
2;β)

(Eq. 7) is positive if
(r1 − r2) · (r∗1 − r∗2) > 0. (19)

For a given reference point, (r∗1, r
∗
2), the nodal surface is a hyperplane given by r1 = r2 for

all temperatures. This is illustrated in Fig. 1, which gives examples for the three types
of paths that contribute to the sampling of diagonal density matrix elements. Paths that
originate from the reference point, (r∗1, r

∗
2), can either return to their point of origin or

to the only possible permutation, (r∗2, r
∗
1).
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Figure 1: Illustration of the three different types of paths for two free fermions that originate from the
reference point (r∗1, r

∗
2). A node-avoiding (“NA”), a node-crossing (“NX”) as well as a permuting and

consequently node-crossing path (“PNX”) are shown in the (r1, r2) plane. The thick solid line indicates
the node given by r1 = r2.

In restricted PIMC method, only node-avoiding paths labeled “NA” contribute. For
two particles, the nodal restriction prohibits all permutations. However, if simulations
with the direct fermion method are performed no restrictions are applied. Nonpermuting
paths that cross the nodes (“NX”) and those that avoid it (“NA”) both enter with a
positive sign. Permuting paths (“PNX”) are now permitted and enter with a negative
weight given by the (−1)P factor. (In bosonic simulations, permuting and non-permuting
paths enter with a positive weight.)

In order to compute the momentum distribution for two identical fermions, one would
perform simulations with one open path. In case of the identity permutation, one polymer
is open and the other one is closed. If the paths permute, one long polymer forms instead.
Fig. 2 illustrates both cases in the (r1, r2) plane. For simplicity, only paths that originate
at (r∗1, r

∗
2) and have an open end on the second coordinate, r2, are shown. Because of the

nodal restriction only node avoid paths are shown: (i) Non-permuting paths with r1 = r∗1
and r2 6= r∗2. The path of particle 1 is closed, that of particle 2 is open. (ii) Permuting
paths with r1 = r∗2 and r2 6= r∗1. When diagonal matrix elements are calculated, the
nodal restriction eliminates the second type of paths because the final point, (r∗2, r

∗
1), lies

on the other side of the node. However, in simulations with open paths, many final points
for permuting paths are permitted (see dashed line in Fig. 2) because path of particle 2
does not have to terminate at the origin of path of particle 1.

With increasing number of fermions, it becomes more difficult to illustrate the ef-
fects of the nodal restriction graphically. However, computationally the enforcement
of the nodal restriction is not more difficult than for simulations with closed paths.
One simply has to verify that the sign of the Slater determinant in Eq. (7) is positive
(ρT (R(t),R∗; min(t, β−t)) > 0.) at every time step in imaginary time regardless whether

7



r
1

r
2

(r
1
*,r

2
*)

ρ(r
1
,r

2
,r

1
*,r

2
*,t)<0

ρ(r
1
,r

2
,r

1
*,r

2
*,t)>0

r 1
=r 2

 n
ode ρ

(r 1
,r 2

,r 1
*,r 2

*,t
)=

0

P
=

(2
1
)

P
=

Id
e
n
ti
ty

r 1
=

r 2
*

r 1
=

r 1
*

"NA"

"PNA"

Figure 2: Illustration of node-avoiding paths that contribute to off-diagonal density matrix elements
for two fermions. Both start at the reference point (r∗1, r

∗
2). Shown are paths with one open end at

r2. The dot-dashed line indicates possible end points for nonpermuting paths [r1 = r∗1, labeled “NA”].
In contrast to on-diagonal matrix elements shown in Fig. 1, here, we find permuting but node-avoiding
paths with end points on the dashed line [r1 = r∗2, labeled “PNA”] that represent negative contributions
to the density matrix.

open paths are present in the simulations or not.

2.4. Monte Carlo sampling with open paths

When open paths are introduced to restricted PIMC simulations, one first has to
decide at which point in imaginary time one opens the paths, relative to the reference
point that one typically places at t = 0. With the dual reference point method, one
can put the open ends at t = 0 or at t = β/2. We used the latter choice because it is
more symmetric and one avoids the singular behavior of the fermion density matrices as
t→ 0+.

We used the bisection method [2] to sample new configurations of open and closed
paths. First one first picks an interval in imaginary time of 2l − 1 steps, in which the
paths will be regenerated. l is the number of bisection levels. If it is chosen too large,
most trial moves will be rejected. If it is too small, the paths diffuse very slowly. The
optimal choice depends on strength of the interactions and the fermion degeneracy. After
selecting the time interval, one uses the heat-bath algorithm to sample permutation space
of the moving particles. One proceeds with the bisection method until new positions
have been proposed at every time step. In this study, we sample the paths from the free-
particle density matrix. For a closed path that connects points r1 and r2, the sampling
probability becomes,

Tl(r) = (2lπλτ)d/2 exp

{
− (r− rm)2

2lλτ

}
, (20)
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where rm is the mid point (r1+r2)/2. For strongly interacting systems, a better sampling
efficiency has been reached by adding a drift and a covariance term [2]. The free-particle
sampling probability of an open path that is connected at one point r1 reads,

Tl(r) = (4lπλτ)d/2 exp

{
− (r− r1)2

4lλτ

}
. (21)

The pair action, u(R,R′;β) = − log[ρ(R,R′; τ)/ρ0(R,R′; τ)], is then used to determine
whether a particular configuration will be rejected or preliminarily accepted.

As a final step, one verifies if the nodal constraint is satisfied at every time step.
Otherwise the proposed configuration is rejected. For fermion simulations with only
closed paths, one can eliminate odd permutations from consideration because they would
inevitably violate the nodes. In the presence of open paths, this is no longer correct
because otherwise we would not be able to sample the negative pieces of the SPRDM.
Still in simulations with open path the following two conditions can be used to eliminate
paths early on that violate the nodes: (a) It is impossible to permute an even number of
closed paths while keeping the coordinates of all other particles fixed. (b) It is impossible
to permute an open and a closed path in a move that does not change the time slice with
the open ends. These two simple rules are employed to improve the efficiency of the
algorithm. Paths that violated these conditions would inevitably be rejected lagter when
the nodal restriction are enforced rigorously.

In a homogeneous system, the SPRDM n(s) is only a function of |s|. However, in
a periodic but finite simulation cell, n(s) is expected show some dependence on the
orientation of s vector with respect to the cell vectors. Still all n(s) results, that we will
be present, will be spherically averaged. However, for the computation of the momentum
distribution, n(k) ∝

〈
eiks

〉
, the angular dependence of n(s) is important. Therefore we

compute n(k) directly during the Monte Carlo simulation for a reasonable number of k
vectors. This avoids storing averages of the d dimensional function n(s).

The normalization of n(s), is not determined a priori in the PIMC simulations. Like
for bosonic simulations, we determine the normalization by anchoring the distribution at
the origin, n(s = 0) = 1. To further reduce the error bars of n(s), we sample the open
path more often than the others and increase the frequency of moves that involve the
open slice. Still, a difficulty arises from the fact that the probability for the two open
ends to be separated by less than distance δ scales as δd in d dimensions. The associated
statistical uncertainty increases for small δ as δ−d/2, which makes it difficult to anchor
the distribution n(s) accurately. To make this process more robust, we fit the observed
histogram of end-to-end separations, s, to the following functional form:

lim
s→0

nMC(s) = ξ1

[
1− 〈K〉

λd
s2 + ξ2s

4

]
. (22)

ξ1 and ξ2 are fit parameters. K is the kinetic energy of the system that we computed
with separate simulations of only closed paths.

3. Results

We determined the momentum distribution of the homogeneous electron gas at three
different conditions. First we study the spin polarized electron gas at a density of rs =
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Figure 3: The left panels show the momentum distributions n(k) from PIMC simulations (circles) with
33 spin polarized electrons for different temperatures at (rs = 4). For T ≥ TF /4, the population of low
momentum states is enhanced compared with the corresponding ideal Fermion results (dashed lines),
which leads to a lowering of kinetic energy (K < K0). The right panel shows the corresponding off-
diagonal density matrix elements n(s). With decreasing temperature, a negative region near skF = 5.8
appears.
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4, which corresponds to the electron density of a low density metal such as sodium.
The computed momentum distribution turns is similar to that of an ideal Fermi gas.
Second we calculated n(k) for spin polarized electron gas at a much lower density of
rs = 40, where correlation effects are very large and significant deviations from the free
particle behavior are found. Finally we present results for the nonpolarized electron gas
at rs = 40 where correlation effects are even more important. For all three conditions,
we have computed the momentum distribution for a series of temperatures ranging from
1 ≤ TF /T ≤ 16. We compare with results from zero temperature quantum Monte Carlo
simulations.

Fig. 3 shows the momentum distribution for spin polarized electron gas as a function
of temperature. In the limit of high temperature T � TF , fermion effects become
less important and one recovers the classical Maxwell-Boltzmann distribution. With
decreasing temperature, one finds that population of low momentum states with k <
kF increases until it reaches 1, the maximum allowed by the Pauli exclusion principle.
Simultaneously, the slope of n(k) at the Fermi wave vector becomes increasingly steep.
We do not exactly recover the limit of ideal Fermi function in Eq. 17, because of finite
size effects. The system size we used, N = 33 at T = TF /16, is already a demanding
computation, in part because we used a time step of τ = 1/32TF needed to enforce the
nodal constraint accurately along the paths that required simulations with up to 384
time slices. Notice that at T = TF /16 there are still small but non-negligible thermal
excitations of states above kF present. The correlation effects, absent for free particles,
are small but nevertheless significant. At high temperature, the interactions lead to an
increased population of low momentum states resulting in a lowering of the total kinetic
energy. The reason for this effect is that the entropy is the dominant part of the free
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energy at high temperature. Interactions can lower the entropy which also leads to a
lowering of the kinetic energy. This effect has been discussed in detail in [39]. At low
temperature, the free energy is dominated by the interaction term and the kinetic energy
is always higher than the corresponding ideal value. As a result, even at T = 0, states
above the kF are populated. According to Migdal’s theorem [40], as long as the system
remains a Fermi liquid, the discontinuity at kF remains, but the step size is reduced
compared to the free fermion value.

On the right side of Fig. 3, we show the SPRDM n(s). They are very close to
the corresponding free particles distributions. However, in the more correlated systems,
discussed later, significant deviations from the ideal behavior are found. At high temper-
ature, (in the classical limit) n(s) is dominated by a single Gaussian. With decreasing
temperature, a shallow negative region develops around skF = 5.8. At skF = 7.25, n(s)
becomes positive again and exhibits a maximum at skF = 8. Further oscillations cannot
be identified for this system size.

Fig. 4 shows the distribution of positive and negative contribution of the SPRDM.
At small separation, n(s) is dominated by the positive contributions because negative
terms are strongly disfavored by the nodal restriction. The negative region near skF =
5.8 develops because two particle permutations occur with increasing probability for
temperatures T ≤ TF . Such open paths can spread out further than single open paths
and therefore start to dominate at intermediate separations, s. As the temperature is
decreased further below TF , longer and longer permutation cycles contribute to n(s).
The magnitude of positive and negative contributions increases with s but each function
dominates for different separations giving rise to the oscillatory behavior of the total n(s)
function, which is expected from the zero temperature result.

Fig. 4 also shows the probability of finding a permutation cycle, P (l), weighted the
overall permutation sign as a function of the cycle length. At high temperature longer
permutation cycles occur with very small probability because the thermal De Broglie
wave length, λ2

th = 4πλβ, is short compared to the inter-particle spacing, which renders
permutations unlikely. With decreasing temperature, longer permutations occur more
frequently and the cycle distribution approaches a positive constant at T = TF /8. The
occurrence of a particular cycle length is no longer correlated with total permutation,
and overall there are more positive than negative permutations. At lower temperature
T = TF /16, more negative permutations occur, which reduces the function P (l). qThis
distribution shows oscillation for the largest occurring cycle lengths, which is a finite size
effect. When such a long cycle occurs it is less likely there is also another permutation
cycle that alters the total sign of the permutation.

Fig. 5 shows the n(k) and n(s) functions for the spin polarized electron gas at a much
lower density of rs = 40. Under these conditions, the particles are significantly more
correlated and their behavior differs substantially from that of free fermions. As a result,
the momentum distribution is much more spread out leading to the population of higher
momentum states. The total kinetic energy is clearly above the corresponding ideal value.
In the low temperature limit, the population of the k = 0 state reaches a value of only
about 0.8 compared to 1.0 for free particles. The n(s) distribution is shifted to smaller
s values indicating that the paths are more localized because of repulsive interactions.

Fig. 6 shows the corresponding results for the nonpolarized electron gas with 66
electrons. These simulations are much more efficient than simulations at higher density
because the interactions lead to some localization, which cuts down on the number of long
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permutation cycles that need to samples accurately. Simulations of stronly correlated
systems are therefore less demanding than those of weakly interacting particles.

0 1 2

k / k
F

0

0.2

0.4

0.6

n
(k

)

0

0.2

0.4

0.6

0.8

1
n
(k

)
PIMC  T=T

F
 / 16

VDM   T=T
F
 / 16

DMC   T=0

spin pol. N=33

nonpol. N=66

Figure 8: Comparison of the momentum distribution for rs = 40 at T = TF /16 computed with PIMC,
VDM and ground state diffusion Monte Carlo (DMC) calculations at T = 0. The upper graph shows
results from simulation with 33 spin polarized electrons, the lower graph represents the unpolarized case
with 66 particles.

In Fig. 7, the occupation of the zero momentum state is plotted as a function of
temperature. At high temperature, all curves converge to the free particle result. Sim-
ulations of the spin polarized electron gas at rs = 4 are above the ideal result for high
temperatures underlining the lowering of the kinetic energy. For low temperatures, they
converge to the ideal value of 1 within the error bars. The graph also shows that the low
density results converge to a ground state limit as well.

In Fig. 8, we compare PIMC results at T = TF /16 with the ground state momen-
tum distribution derived from diffusion Monte Carlo (DMC) simulations using backflow
nodes [41] (For additional DMC results see [42]). The agreement between PIMC and
DMC is excellent for both spin polarizations considered here. Only for the unpolarized
case, one observes some very small deviations around k ≈ kF , an indication of thermal
excitation present.

Fig. 8 for the spin polarized case shows good agreement with a variational density
matrix (VDM) calculation using the free particle density matrix (Eq. 7) multiplied by a
temperature dependent pair product Jastrow factor. The Jastrow factors had the form,

j(r, r′;β) = exp

[
−P (r;β) + P (r′;β)

2

]
, (23)

with P (r;β) = A(1 − e−Br)/r. To satisfy the cusp condition at the origin and the free
plasmon large r limit, A = 2

√
r3
s/3 tanh(β2

√
3/r3

s) and B =
√

2/A. This trial density
matrix reproduces the known ground state correlation energies to a relative accuracy of
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Figure 9: Finite size study of the momentum distribution for spin polarized electron gas at rs = 40 and
TF /T = 8 computed using the variational density matrix method for N = 33, 57, and 117 particles in
periodic boundary conditions.

4% for rs = 1 to 20 and correctly approaches the high temperature limit. However for
the unpolarized, VDM predicts n(k) values that are significantly too high for k < kF .
While the VDM method can certainly be improved by choosing parameters in the Jastrow
factor more appropriately, it underlines the need for methods such as restricted PIMC
simulations that work without input from analytical calculations.

To estimate the finite size effects, we used the VDM method which is significantly
less computationally demanding than PIMC simulations. Fig. 9 shows the finite size
dependence of the momentum distribution for the spin polarized electron gas at rs = 40
and TF /T = 8, a density at which PIMC and VDM agree well. The simulations were
performed for different numbers of particles corresponding to filled k shell structures
with N = 33, 57, and 117 particles. Using periodic boundary conditions, the function
n(k) can only be computed for k values in the reciprocal lattice of the simulation cell.
Consequently, n(k) is shown for a different set of k values depending on the number of
particles. The overall agreement of the computed momentum distribution is very good,
indicating that the finite size errors are small at these temperatures.

4. Conclusions

This computational technique allows one to calculate the momentum distribution
within PIMC for fermion systems. It combines the sampling methods using open paths
developed for bosonic liquids with restricted path technique derived for fermions. Re-
sults for the homogeneous electron gas show that the temperature dependence of the
momentum distribution can be studied and ground state results can be reproduced. The
method is applicable to any Fermi system, in particular to hot dense hydrogen [43] where
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one expects significant changes in the momentum distribution with increasing density as
the electrons are delocalized in the molecular-metallic transition, and to calculate the
momentum distribution of 3He [44] and 3He-4He mixtures.
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