Superionic to superionic phase change in water: consequences for the interiors of Uranus and
Neptune
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Using density functional molecular dynamics free energy calculations, we show that the body-centered-cubic
phase of superionic ice previously believed to be the only phase is in fact thermodynamically unstable compared
to a novel phase with oxygen positions in fcc lattice sites. The novel phase has a lower proton mobility than
the bc phase and may exhibit a higher melting temperature. We predict a transition between the two phases
at a pressure of 1 + 0.5 Mbar, with potential consequences for the interiors of ice giants such as Uranus and

Neptune.

PACS numbers: 96.15.Nd, 66.30.H-, 91.60.Hg

Water is one of the most prevalent substances in the uni-
verse and exists in a large number of phases over a vast range
of temperature and pressure conditions. In addition to the lig-
uid, gas, plasma and many solid phases [[116], water also pos-
sesses a superionic phase, in which the oxygen atoms occupy
fixed lattice positions as in a solid, while hydrogen atoms mi-
grate through the lattice as in a fluid [[7 [8]. The superionic
phase is predicted to occupy a large section of the ice phase
diagram for pressures in excess of 0.5 Mbar and temperatures
of a few thousand Kelvin [[7/H10]. As this regime corresponds
to conditions in the interiors of ice giants such as Uranus and
Neptune, which are believed to consist largely of water, it is
predicted that these planets consist largely of superionic ice
[8], making an understanding of the physical and chemical
properties of superionic ice vital for understanding the inte-
rior structure and evolution of these planets.

Although superionic ice has been extensively studied in ab
initio theoretical studies [[7H10]], all works up to this point have
assumed the superionic phase to maintain a body centered cu-
bic (bcc) structure for the oxygen sublattice, as seen in the
solid ice VII and ice X phases [[L1]. In this paper we predict
instead, via density functional theory (DFT) free energy cal-
culations, that the bcc phase is thermodynamically unstable
relative to a denser face centered cubic (fcc) phase for pres-
sures in excess of 1.0 &= 0.5 Mbar. The fcc phase is found to
have a lower hydrogen mobility than the bcc phase. The pro-
posed phase transition may intersect with the Neptunian and
Uranuian isentropes, suggesting the possibility of a superionic
to superionic phase transition in ice giant planets.

The existence of superionic ice was initially predicted in
via DFT-MD simulations by Cavazzoni et al [9]], by heating
of the ice X and ice VII phases of water at pressures in excess
of 0.5 Mbar. The ice X and ice VII phases of water have a
bce oxygen sublattice and in these simulations, which used a
fixed unit cell with periodic boundary conditions, the bcc oxy-
gen sublattice was found to be maintained upon the transition
to the superionic phase. Goldman [10] et al in 2005 studied
bonding and diffusion in superionic water, again assuming the
oxygen atoms to retain a bee sublattice. French et al. [7, 8]
extensively studied the bcc superionic phase and its transition

to the fully fluid or plasma regime in which both hydrogens
and oxygens become mobile. In repeated simulations, French
et al. cooled water from the fully fluid regime and observed
the re-formation of a superionic phase with a bcc oxygen sub-
lattice, however the geometric constraints of the unit cell used,
with 54 H,O molecules in a cubic cell, mean that the forma-
tion of alternative structures whose sublattices do not conform
to these constraints is penalized. Experimentally, superionic
ice has been observed in laser-heated diamond anvil cell ex-
periments by Goncharov et al. [12] who demonstrated spec-
troscopically a phase transition believed to correspond to the
superionic phase at approximately 0.47 Mbar, however these
experiments did not provide structural information.

Hints of the instability of the bcc oxygen sublattice over at
least some portion of the superionic ice regime have been ob-
served in several studies. French ef al [7]] noted the existence
of aregion of the phase diagram at low temperature and mod-
erate pressure in which the bcc oxygen sublattice was unstable
within molecular dynamics (MD) — that is, at which the sys-
tem readily evolves out of the sublattice in timescales acces-
sible to our MD simulations. In the present authors’ study of
the solubility properties of superionic ice at giant planet core
conditions [[13]] we briefly noted that the bcc phase became un-
stable at two sets of conditions under consideration (10 Mbar
with temperatures of 2000 and 3000 K). Recent work on supe-
rionic ammonia [[14]] has raised the possibility of the existence
of phase changes within the superionic regime of NH3. These
factors motivated a formal study of alternative oxygen sublat-
tices in superionic water.

The first stage of our study was to investigate the short-
term stability of the bcc lattice as a function of temperature
and density, along with that of the fcc and hexagonal close
packed (hcp) lattices. The ability of a system to retain a partic-
ular structure over the picosecond timescales associated with
a molecular dynamics simulation is a necessary but insuffi-
cient condition for a structure to represent the thermodynamic
ground state. We restricted our attention to these three sim-
ple high-symmetry sublattices on the tentative assumption that
thermal vibrations and the disordered migration of the hydro-
gen atoms mean that the oxygen sublattice is likely to possess



a configuration with high degree of symmetry. To investigate
the short-term stability of a superionic lattice structure, we
first undertake a molecular dynamics simulation in which the
oxygen atoms remain constrained to lattice positions while the
hydrogen atoms move freely to equilibrate at the desired tem-
perature. The constraint on the oxygen atoms is then released
and the dynamics continued, with a newly-generated thermal
velocity distribution. We simulated fcc and bec ice struc-
tures in constant cells at temperatures of 2000-5000 K and
at nine densities from 3 gcm ™3 (approximately 1 Mbar) to 11
gcm ™3 (approximately 40 Mbar). We used the VASP package
[22] and pseudopotentials of the projector-augmented wave
type [23] with the exchange-correlation functional of Perdew,
Burke and Ernzerhof [24]. Supercells with 32, 54 and 48
molecules were used for the fcc, bee and hep structures re-
spectively. Molecular dynamics simulations used a timestep
of 0.2 fs and were integrated over between 2000 and 5000
steps. A distortion in the bcc oxygen sublattice was observed
at 2000 K for densities of 6 and 7 gcm ™2 (corresponding to
pressures around 9 and 14 Mbar) and also at 6 gcm™2 at a
temperature of 4000 K. In a later simulation we also found
the bec structure to become distorted at a pressure of 40 Mbar
and temperature of 10000K. The fcc superionic structure re-
mained stable in MD under all conditions studied.

All attempts to simulate superionic ice with an hcp oxy-
gen sublattice rapidly resulted in the hcp oxygen sublattice
becoming distorted. Although the hcp and fcc lattices are very
similar, differing only by the stacking of layers, and represent
equivalent packings of spheres, we note that there is an im-
portant difference in their distribution of interstitial sites. In
the fcc superionic structure we find that the hydrogen atoms
largely concentrate around the tetrahedral interstitial sites, of
which there are two per oxygen atom. Due to the different ar-
rangement of oxygen atoms in the hcp crystal, the equivalent
tetrahedral interstitial sites are arranged in very closely spaced
pairs, making the simultaneous occupation of all tetrahedral
sites disfavored.

Having established the short-term stability of the fcc and
bec phases across most of the superionic ice regime, we must
now determine which phase has a lower Gibbs free energy
G = U + PV —TS. We chose several representative points
throughout the portion of the superionic regime of interest,
ranging from pressures of 1 Mbar close to the onset of supe-
rionic behavior up to 40 Mbar corresponding to the approx-
imate pressure of Jupiter’s core; we chose points at which
both bce and fce phases were stable, steering clear of the low-
temperature regime around p = 6 gcm 2 (= 10 Mbar).

For the computation of Gibbs free energies we adopt a two-
step coupling constant integration (CCI) method as recently
applied by several authors [13| [I5H17] and identical to that
described in more detail for our earlier work on superionic
water solubility [[13]]. In this scheme the free energy of the sys-
tem of interest is computed from the free energy of a simpler
system whose free energy is known analytically via a thermo-
dynamic integration in which the simpler system is gradually
changed into the system of interest. For the analytic system

P(Mbar) T(K)| AG PAV AU —TAS
[eV/mol] [eV/mol] [eV/mol] [eV/mol]

3000(0.002(11) 0.017(16) -0.037(20) 0.023(28)
3000 0.027(8) 0.064(20) 0.019(16) -0.055(26)
3000( 0.074(7) 0.072(26) 0.087(13) -0.084(30)
10 5000| 0.065(8) 0.054(24) 0.102(18) -0.095(31)
40 2000/ 0.256(8) 0.198(14) 0.229(10) -0.165(19)
40 3000| 0.214(7) 0.145(12) 0.177(20) -0.108(24)
40 50000.180(11) 0.033(19) 0.188(18) -0.042(28)

TABLE I: Difference in free energy Gycc — Gfec between the fec
and bec phases, and the PAV, AU and TAS components of the
free energy difference.

to resemble the superionic phase we choose a system consist-
ing of noninteracting harmonic oscillators at lattice sites for
oxygen atoms, and a noninteracting ideal gas for the hydro-
gen atoms. The difference in Helmholtz free energy between
systems 1 and 2 governed by potential energy functions U
and Us is given by

1
F1:/ <U17U2>)\d>\+F2 (D)
0

where the integral is taken over a set of systems governed
by a linear combination of the forces from the two systems,
Ux = (1 = \)U; + AUs. For numerical efficiency, the inte-
gration is taken in two steps: firstly from the full DFT system
and to a system governed by a simple empirical potential cho-
sen to closely resemble the dynamics of the DFT system, and
then from the empirical system to the idealized noninteracting
system. For our empirical potential we used a simple two-
body spline-form potential generated by the force-matching
methodology of Izvekov et al [20] in combination with a har-
monic potential anchoring oxygen atoms to their lattice sites.
Appropriate volumes for the simulation cell were determined
using the variable-cell methodology of Hernandez [21]].

Results of the free energy calculations are shown in Table
[ We find the fcc structure to have a lower Gibbs free energy
under all conditions studied, with the exception of the 1 Mbar
and 3000 K point where the energy difference between bcc
and fcc is close to zero. Figure[I|plots free energy differences
between the two structures as a function of pressure at 3000 K
and of temperature at 40 Mbar. A strong tendency towards
greater stability of the denser fcc structure as pressure is in-
creased. We predict a transition from bcc to fcc stability at a
pressure of 1.0£ 0.5 Mbar. Note that the error bar on the tran-
sition pressure means that the possibility that bcc may have
no stability field at all is not excluded. Figure[2] shows the es-
timated location of the bcc to fcc transition in relation to the
phase diagram. Given the small temperature range over which
water is superionic at pressures close to 1 Mbar, we were not
able to estimate a Clapeyron slope for the transition.

The free energy difference between two structures may be
broken down into three components; an internal energy term
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FIG. 1: Gibbs free energy difference per molecule between the bce
and fcc phases (solid line) shown as a function of pressure for a tem-
perature of 3000 K, and as a function of temperature for a pressure of
40 Mbar. Also shown via dotted lines are the internal energy AU and
pressure-volume PAV components of the free energy difference.

AU, a volume term PAV and an entropic term —T'AS. The
resulting components are listed in Table 2. It is notable that the
pressure-volume and internal-energy terms increasingly favor
the fcc structure as pressure is increased, while the entropic
term has the opposite sign.

Given the different sizes of cells used for the bcc and fec
phases and especially given the differing k-point densities
which result from using a 2 X 2 x 2 k-point grid for both
cells, it is necessary to carefully check the convergence of
the computed quantities with respect to increasing the k-point
grid and, especially for the smaller fcc supercell, for supercell
size, in order to ensure that the computed energy differences
are not an artefact of supercell size. Doubling the size of the
fce supercell from 96 to 182 atoms via a duplication in the
[001] lattice direction at a density of resulted in a change of
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FIG. 2: Phase diagram of water showing the superionic regime. The
phase boundary from solid ice to superionic water indicated by a
shading gradient indicating the degree of uncertainty due to the er-
ror bars. The triple point and melting line of bcc superionic ice are
from Redmer et al [8], as are the indicated isentropes of Uranus and
Neptune. The superionic regime is shaded to show the transition
from bcc to fce stability at pressures of 1 + 0.5 Mbar. The solid-
to-superionic and fcc superionic to fully fluid melting lines were ob-
tained by single-phase simulations in which the system was heated
and cooled; we estimate a slightly higher melting temperature for
the fcc lattice than was found by Redmer et al for the bcc lattice.
The solid to superionic transition was estimated by one-phase sim-
ulations in which the relevant crystalline ice phase was heated and
cooled and the temperature of the onset upon heating and the cessa-
tion upon cooling of the motion of hydrogen atoms was observed.

less than 0.010 eV per molecule to the internal energy, within
the existing error bars. Increasing the k-point sampling from
2 x 2 x 2t04 x4 x4 likewise changed the computed internal
energy by less than 0.01 eV for the fcc supercell at p = 10.
For the larger bee supercell we found a change of less than
0.006 eV/molecule in the internal energy when increasing the
k-point mesh at p = 5 and a somewhat larger change ( 0.02
eV/molecule) in the internal energy of the bce structure at high
densities of p = 10 (approximately 34 Mbar) due to the clo-
sure of the band gap in the bce structure at high pressures.
We now turn our attention to a comparison of the physical
properties of the fcc and bee phases. A key characteristic of
a superionic phase is the diffusion rate of its mobile species.
We computed the hydrogen diffusion rates for each set of con-
ditions via the method of determining the rate of change of
the average mean square displacement of the hydrogen atoms
from their initial positions. Results are shown in Table II. We
find hydrogen to diffuse more slowly in the fcc than the bcc
structure under all conditions. The greater packing density of
the fcc lattice allows fewer channels for hydrogens to diffuse
from one site to another. Figure3]shows isosurfaces of hydro-
gen density throughout molecular dynamics runs carried out
at 40 Mbar and 5000 K. Apparent from these images is the fact



that hydrogen atoms in the fcc structure are largely confined
to one type of interstitial site (the tetrahedral), while hydrogen
atoms in the bce structure may migrate more freely between
two different types of interstitial site (tetrahedral and octohe-
dral). The greater variety of sites available to the hydrogen
atoms in the bce structure may also explain the entropic pref-
erence for the bec structure. The transition from bee to fcc
thus coincides with a drop in hydrogen mobility, with conse-
quences for thermal and electrical conductivity properties.

FIG. 3: Isosurfaces of constant hydrogen density in molecular dy-
namics simulations of superionic ice in the bcc (upper) and fec
(lower) phases at 40 Mbar and 5000 K. Two different maxima repre-
senting the tetrahedral and octohedral sites are seen in the bcce lattice;
in the fcc lattice by contrast the hydrogens are concentrated at the
tetrahedral interstitial sites.

We have established the stability of the fcc over the bee su-
perionic phase for pressures in excess of 1.0 £ 0.5 Mbar, im-
plying a strong possibility of a superionic-to-superionic phase
transition within this pressure regime. Such a transition could
be experimentally observed by laser heated diamond anvil
cell techniques or laser-driven shock experiments [18].
The rearrangement of oxygen atoms in a bee to fcc transition
can best be detected with X-ray diffraction or X-ray Absorp-
tion Near Edge Structure techniques. Figure 2] also implies

p D(bcc) D(fec) D(bee) D(fec)
(g/cc) 2000K 2000 K 5000 K 5000 K
11 048 020 248 133
9 0.79 048 3.81 218
7 1.55 079 524 352
5 120 098 649 423

TABLE II: Diffusion constants for hydrogen in the superionic ice
with bee and fec oxygen sublattice structures, in A% fs~1. We find
the diffusion constant to be significantly smaller for the fcc than the
bece structure.

that a superionic transition may occur along the isentropes of
Uranus and Neptune, or that alternatively these planets may
bypass the bcc superionic regime altogether.

Previous theoretical studies of superionic water require
some reconsideration in light of these new results. The fcc
phase has a higher melting temperature than the bcc phase,
which will change computed equations of state for this ma-
terial and may lead to a larger superionic ice regime in giant
planet interiors than had previously been considered [7, [8]].
Interior models of Uranus and Neptune based on the assump-
tion that they contain bce superionic water will require some
revision, although the relatively small (< 0.5%) difference in
density between the two phases may preclude a large effect.
The consequences of a superionic to superionic phase tran-
sition should be considered in the context of whether such a
transition may help explain the non-axisymmetric non-dipolar
magnetic fields of these two planets [19]. The conclusions of
our previous work on the solubility of water ice in metallic
hydrogen within gas giant planet interiors do not change
significantly, due to the small magnitude of the free energy
difference between superionic phases ( 0.1 eV) compared to
the free energy associated with solubility under Jupiter and
Saturn core conditions (in excess of 5 eV).

In this work we have predicted the stability throughout most
of the superionic ice regime of a superionic ice phase with
a face centered cubic oxygen sublattice over the previously
known body centered cubic phase, and predicted the likely ex-
istence of a phase change from bcc to fcc at a pressure on the
order of 1 &= 0.5 Mbar. Further work, including understand-
ing the potential implications of phase changes in the supe-
rionic regime for the convective and heat transport properties
of Uranus and Neptune, as well as experimental work aimed
at detecting this phase change in practice, may provide further
insight into the interiors of these poorly-understood ice giants.
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