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Abstract

We extend to three dimensions the Concentric Maclaurin Spheroid method for

obtaining the self-consistent shape and gravitational field of a rotating liquid

planet, to include a tidal potential from a satellite. We exhibit, for the first

time, the important effect of the planetary rotation rate on tidal response of

gas giants. Simulations of planets with fast rotation rates like those of Jupiter

and Saturn, exhibit significant changes in calculated tidal love numbers knm

when compared with non-rotating bodies. A test model of Saturn fitted to

observed zonal gravitational multipole harmonics yields k2 = 0.413, consistent

with a recent observational determination from Cassini astrometry data (Lainey

et al., 2016). The calculated love number is robust under reasonable assumptions

of interior rotation rate, satellite parameters, and details of Saturn’s interior

structure. The method is benchmarked against several published test cases.
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1. Introduction

The gas giants Jupiter and Saturn rotate so rapidly that adequate treat-

ment of the non-spherical part of their gravitational potential requires either a
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very high-order perturbative, or better, an entirely non-perturbative approach

(Hubbard, 2012, 2013; Hubbard et al., 2014; Wisdom, 1996; Wisdom and Hub-5

bard, 2016). Here we present an extension of the Concentric Maclaurin Spheroid

(CMS) method of Hubbard (2012, 2013) to three dimensions to include the tidal

perturbation from a satellite. This allows for high-precision simulations of static

tidal response, consistent with the planet’s shape and interior mass distribution.

The presence of a large rotational bulge produces an observable effect on the10

tidal response of giant planets. This effect, which has not been previously re-

vealed by linear tidal-response theories applied to spherical-equivalent interior

models, has implications for the observed tidal responses of Jupiter and Saturn.

The Juno spacecraft is expected to measure the strength of Jupiter’s grav-

itational field to an unprecedented precision (∼ one part in 109) (Kaspi et al.,15

2010), potentially revealing a weak signal from the planet’s interior dynam-

ics. Also present in Jupiter’s gravitational field will be tesseral-harmonic terms

produced by tides raised by the planet’s large satellites. In fact, close to the

planet, the gravitational signal from Jupiter’s tides has a similar magnitude to

the predicted signal from models of deep internal dynamics (Cao and Stevenson,20

2015; Kaspi et al., 2010; Kaspi, 2013). An accurate prediction of the planet’s

hydrostatic tidal response will, therefore, be essential for interpreting the high-

precision measurements provided by the Juno gravity science experiment.

Although the Cassini Saturn orbiter was not designed for direct measure-

ment of high-order components of Saturn’s gravitational field, it has already25

provided gravitational information relevant to the planet’s interior structure.

Lainey et al. (2016) used an astrometry dataset of the orbits of Saturn’s co-

orbital satellites to make the first determination of the planet’s k2 love number.

Their observed k2 was significantly larger than the theoretical prediction of

Gavrilov and Zharkov (1977). A mismatch between an observed k2 and the30

value predicted for a Saturn model fitted to the planet’s low-degree zonal har-

monics J2 and J4 would raise questions about the adequacy of the hydrostatic

(non-dynamic) theory of tides.

In this paper we present theoretical results for simplified Saturn interior
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models matching the planet’s observed low-degree zonal harmonics. When these35

models are analyzed with the full 3-d CMS theory including rotation and tides,

we predict a gravitational response in line with the observed k2 value of Lainey

et al. (2016), suggesting that the observation can be completely understood in

terms of a static tidal response. A similar test will be possible for Jupiter once

its k2 has been measured by the Juno spacecraft.40

There is extensive literature on the problem of the shape and gravitational

potential of a liquid planet in hydrostatic equilibrium, responding to its own

rotation and to an external gravitational potential from a satellite; see, e.g., a

century-old discussion in Jeans (2009). Many classical geophysical investigations

use a perturbation approach, obtaining the planet’s linear and higher-order45

response to small deviations of the potential from spherical symmetry. A good

discussion of the application of perturbation theory to rotational response, the

so-called theory of figures, is found in Zharkov and Trubitsyn (1978), while

a pioneering calculation of the tidal response of giant planets is presented by

Gavrilov and Zharkov (1977).50

Hubbard (2012) introduced an iterative numerical method, based on the

theory of figures, for calculating the self-consistent shape and gravitational field

of a constant density, rotating fluid body to high precision. In this method,

integrals over the mass distribution are solved using Gaussian quadrature to

obtain the gravitational multipole moments. This method was extended to non-55

constant density profiles by Hubbard (2013), by approximating the barotropic

pressure-density relationship with multiple concentric Maclaurin (i.e., constant-

density) spheroids. This approach (called the CMS method) mitigates problems

with cancellation of terms that arise in a purely numerical solution to the gen-

eral equation of hydrostatic equilibrium, and has a typical relative precision of60

∼ 10−12. The CMS method has been benchmarked against analytical results

for simple models (Hubbard et al., 2014) and against an independent, non-

perturbative numerical method (Wisdom, 1996; Wisdom and Hubbard, 2016).

The theory of Gavrilov and Zharkov (1977) begins with an interior model

of Saturn fitted to the values of J2 and J4 observed at that time. This interior65
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model tabulates the mass density ρ as a function of s, where s is the mean radius

of the constant-density surface. Tidal perturbation theory is then applied to

this spherical-equivalent Saturn. The Gavrilov and Zharkov (1977) approach

is sufficient for an initial estimate of the tidally-induced terms in the external

potential, but it neglects terms which are of the order of the product of the tidal70

perturbation and the rotational perturbation. Here we demonstrate that, for a

rapidly-rotating giant planet, the latter terms make a significant contribution

to the love numbers knm, as well as (unobservably small) tidal contributions to

the gravitational moments Jn.

Folonier et al. (2015) presented a method for approximating the love numbers75

of a non-homogeneous body using Clairaut theory for the equilibrium ellipsoidal

figures. This results in an expression for the love number k2 for a body composed

of concentric ellipsoids, parameterized by their flattening parameters. In the

case of the constant density Maclaurin spheroid, there is a well-known result

that the equipotential surface is an ellipsoid. However, in bodies with more80

complicated density distributions, the equipotential surfaces will have a more

general spheroidal shape. Because of the small magnitude of tidal perturbations,

the method of Folonier et al. (2015) works in the limit of slow rotation despite

this limitation. However, the method does not account for the coupled effect of

tides and rotation, and does not predict love numbers of order higher than k2.85

Within these constraints, we show below that our extended CMS method yields

results that are in excellent agreement with results from Folonier et al. (2015).

Although our theory is quite general and can be used to calculate a rotating

planet’s tidal response to multiple satellites located at arbitrary latitudes, lon-

gitudes, and radial distances, for application to Jupiter and Saturn it suffices to90

consider the effect of a single perturbing satellite sitting on an orbital plane at

zero inclination to the planet’s equator. Since tidal distortions are always very

small compared with rotational distortion, and Jupiter’s Galilean satellites, as

well many of Saturn’s larger satellites, are on orbits with low inclination, the

tidal response to multiple satellites can be obtained by a linear superposition of95

the perturbation from each body. Extension of our theory to a system with a
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large satellite on an inclined orbit, such as Neptune-Triton, would be straight-

forward, but is not considered here.

2. Concentric Maclaurin Spheroid method with tides

2.1. Model parameters100

In the co-rotating frame of the planet in hydrostatic equilibrium, the pressure

P , the mass density ρ and the total effective potential U are related by

∇P = ρ∇U. (1)

The total effective potential can be separated into three components,

U = V +Q+W, (2)

where V is the gravitational potential arising from the mass distribution within

the planet, Q is the centrifugal potential corresponding to a rotation frequency

ω, and W is the tidal potential arising from a satellite with mass ms at planet-

centered coordinates (R,µs, φs), where R is the satellite’s orbital distance from

the origin, µs = cos θ, where θ is the satellite’s planet-centered colatitude and

φs is the planet-centered longitude. For the purposes of this investigation, we

always place the satellite at angular coordinates µs = 0 and φs = 0. The relative

magnitudes of V , Q, and W can be described in terms of two non-dimensional

numbers:

qrot =
ω2a3

GM
(3)

for the rotational perturbation and

qtid = −3msa
3

MR3
(4)

for the tidal perturbation, where G is the universal gravitational constant, and

M and a are the mass and equatorial radius of the planet. The planet-satellite

system is described by these two small parameters along with a third parameter,

the ratio a/R.

5



Since CMS theory is nonperturbative, in principle our results are valid to all105

powers of these small parameters and their products (until we reach the com-

puter’s numerical precision limit). For the giant-planet tidal problems that we

consider here, terms of second and higher order in qtid are always negligible, but

terms linear in qtid and multiplied by various powers of qrot and a/R contribute

above the numerical noise level. It is, in fact, terms of order qtid · qrot that110

contribute most importantly to the new results of this paper.

We introduce dimensionless planetary units of pressure Ppu, density ρpu, and

total potential Upu, such that

P ≡GM
2

a4
Ppu

ρ ≡M
a3
ρpu

U ≡GM
a

Upu.

(5)

The CMS method considers a model planet composed of N nested spheroids of

constant density as depicted in Figure 1. We label these spheroids with index

i = 0, 1, 2, . . . , N − 1, with i = 0 corresponding to the outermost spheroid and

i = N−1 corresponding to the innermost spheroid. Each spheroid is constrained115

to have a point at radial distance ai from the planet’s center of mass, such that

each of these fixed points has the same angular coordinates as the sub-satellite

point (µ = 0, φ = 0). Accordingly, the a0 of the outermost spheroid corresponds

to its the largest principal axis, if the perturbing satellite is in the equatorial

plane.120

When qtid = 0, the potential is axially symmetric and the problem can be

solved in two spatial dimensions. However, when both qtid and qrot are nonzero,

the symmetry is broken, meaning that each spheroid has a fully triaxial figure

with the surface described by

ζi ≡ ri(µ, φ)/ai, (6)

such that ζ0 represents the shape of the outer surface.

Taking advantage of the principle of superposition for a linear relationship

between the potential V and the mass density ρ, the total V is given by the sum
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of the potential arising from each individual spheroid (Hubbard, 2013). This

allows us to approximate any monotonically increasing density profile, with the

density of the ith spheroid represented by the density jump

δρi =

ρi − ρi−1, i > 0

ρ0, i = 0.

(7)

This parameterization of density has the added benefit of naturally handling

discontinuities in ρ, as would be expected for a giant planet with a dense central

core.

2.2. Calculation of gravitational potential125

The general expansion of V in spherical coordinates r = (r, µ = cos θ, φ) is

V (r, µ, φ) =

GM

r

[ ∞∑
n=0

Pn(µ)

∫
τ

dτρ(r′)Pn(µ′)

(
r′

r

)k
+

∞∑
n=0

n∑
m=1

Pmn (µ) cos(mφ)

∫
τ

dτ
2(n−m)!

(n+m)!
ρ(r′)Pmn (µ′) cos(mφ′)

(
r′

r

)k
+

∞∑
n=0

n∑
m=1

Pmn (µ) sin(mφ)

∫
τ

dτ
2(n−m)!

(n+m)!
ρ(r′)Pmn (µ′) sin(mφ′)

(
r′

r

)k]
(8)

(Zharkov and Trubitsyn, 1978), where Pn and Pmn are the Legendre and asso-

ciated Legendre polynomials,

dτ = r′2 sin(θ′)dθ′dφ′ = r′2dµ′dφ′,

and the origin, r = (0, 0, 0), is the center of mass of the planet. The potential

at a general point within the planet has a contribution from mass both interior

and exterior to that point, for which the exponent k in Eqn. (8) is different:

k =

n, r′ < r

−(n+ 1), r′ > r.

The centrifugal potential Q depends only on r and µ

Q(r, µ) =
1

3
r2ω2 [1− P2(µ)] . (9)
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The tidal potential W for a satellite at position R = (R,µs, φs) is

W (r) =
Gms

|R− r|
. (10)

The general expansion of W around the center of mass of the planet is obtained

by using the summation theorem for spherical harmonics (Gavrilov and Zharkov,

1977)

W (r, µ, φ) =
Gms

R

∞∑
n=0

[
Pn(µ)Pn(µs)

+2

n∑
m=1

2(n−m)!

(n+m)!
cos(mφ−mφs)Pmn (µ)Pmn (µs)

]
.

(11)

Following Hubbard (2013), we derive non-dimensional quantities in terms of

the planet mass M and maximum radius a = a0. For each spheroid, we define

a dimensionless radius of each spheroid

λi ≡ai/a (12)

and dimensionless density increment, based on the mean density of the planet

ρ̄ =
3M

a3
1∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ30

δi ≡
δρi
ρ̄
.

(13)

The model planet’s mass is then given by the integral expression

M =
1

3

N−1∑
j=0

δjλ
3
j

∫ 1

−1
dµ′
∫ 2π

0

dφ′ζ3j . (14)

The contribution to the potential is expanded in terms of interior and external

zonal harmonics Ji,n and J ′i,n. For the tidal problem, we must also consider the

analogous Ci,nm, C ′i,nm, Si,nm and S′i,nm. These contribute linearly to the total

moment evaluated exterior to the planet’s surface; for instance,

J2 =
∑

i=0,N−1
Ji,2. (15)
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The layer-specific harmonics are then normalized by radius as

J̃i,n ≡
Ji,n
λni

, J̃ ′i,n ≡J ′i,nλ
(n+1)
i

S̃i,nm ≡
Si,nm
λni

, S̃′i,nm ≡S′i,nmλ
(n+1)
i

C̃i,nm ≡
Ci,nm
λni

, C̃ ′i,nm ≡C ′i,nmλ
(n+1)
i .

(16)

Following the derivation in Hubbard (2013) and generalizing the expressions for

full three dimensional volume integrals, we find the normalized interior harmon-

ics

J̃i,n = − 3

n+ 3

δiλ
3
i

∫ 1

−1 dµ
′Pn(µ′)

∫ 2π

0
dφ′ζ

(n+3)
i∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

C̃nm =
6(n−m)!

(n+ 3)(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ζ

(n+3)
i cos(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

S̃nm =
6(n−m)!

(n+ 3)(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ζ

(n+3)
i sin(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

,

(17)

and the exterior harmonics

J̃ ′i,n = − 3

2− n
δiλ

3
i

∫ 1

−1 dµ
′Pn(µ′)

∫ 2π

0
dφ′ζ

(−n+2)
i∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

C̃ ′nm =
6(n−m)!

(2− n)(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ζ

(−n+2)
i cos(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

S̃′nm =
6(n−m)!

(2− n)(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ζ

(−n+2)
i sin(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

(18)

with a special case for n = 2

J̃ ′i,n = −3
δiλ

3
i

∫ 1

−1 dµ
′Pn(µ′)

∫ 2π

0
dφ′ log(ζi)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

C̃ ′nm =
6(n−m)!

(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ log(ζi) cos(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

S̃′nm =
6(n−m)!

(n+m)!

δiλ
3
i

∫ 1

−1 dµ
′Pmn (µ′)

∫ 2π

0
dφ′ log(ζi) sin(mφ′)∑N−1

j=0 δjλ3j
∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3j

(19)

and

J ′′i,0 =
2πδia

3
0

3M
. (20)
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The shape of the surface of the planet is defined by the equipotential rela-

tionship

U(ζ, µ, φ, µs, φs)− U(1, 0, 0, µs, φs) = 0, (21)

where the potential in planetary units at an arbitrary point on the planet’s

surface

U(ζ, µ, φ, µs, φs) =
1

ζ0

[
1−

N−1∑
i=0

∞∑
n=1

λni ζ
−n
0

{
Pn(µ)J̃i,n

−
n∑

m=1

Pmn (µ)
(
C̃i,nm cos(mφ) + S̃i,nm sin(mφ)

)}

+
1

3
qrotζ

3
0 [1− P2(µ)]

− 1

3
ζ30qtid

∞∑
n=2

( a
R

)(n−2)
ζ
(n−2)
0

{
Pn(µ)Pn(µs)

+2

n∑
m=1

(n−m)!

(n+m)!
cos(mφ−mφs)Pmn (µ)Pmn (µs)

}]
(22)

matches the reference potential at the sub-satellite point

U(1, 0, 0, µs, φs) =1−
N−1∑
i=0

∞∑
n=1

λni

{
Pn(0)J̃i,n −

n∑
m=1

Pmn (0)C̃i,nm

}

+
1

2
qrot −

1

3
qtid

∞∑
n=2

( a
R

)(n−2){
Pn(0)Pn(µs)

+2

n∑
m=1

(n−m)!

(n+m)!
cos(−mφs)Pmn (0)Pmn (µs)

}
.

(23)

Similarly, the shapes of the interior spheroids are found by solving

Uj(ζ, µ, φ, µs, φs)− Uj(1, 0, 0, µs, φs) = 0, (24)
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where

Uj(ζj , µ, φ, µs, φs) =− 1

ζjλj

N−1∑
i=j

∞∑
n=0

(
λi
λj

)n
ζ−nj

{
Pn(µ)J̃i,n

−
n∑

m=1

Pmn (µ)
(
C̃i,nm cos(mφ) + S̃i,nm sin(mφ)

)}

+

j−1∑
i=0

∞∑
n=0

(
λj
λi

)n+1

ζn+1
j

{
J̃ ′i,nPn(µ)

−
n∑

m=1

Pmn (µ)
(
C̃ ′i,nm cos(mφ) + S̃′i,nm sin(mφ)

)}

+

j−1∑
i=0

J ′′i,0λ
3
jζ

3
j

]
+

1

3
qrotλ

2
jζ

2
j [1− P2(µ)]

− 1

3
λ2jζ

2
j qtid

∞∑
n=2

(
aλj
R

)(n−2)

ζ
(n−2)
j

{
Pn(µ)Pn(µs)

+2

n∑
m=1

(n−m)!

(n+m)!
cos(mφ−mφs)Pmn (µ)Pmn (µs)

}
(25)

and

Uj(1, 0, 0, µs, φs) =− 1

λj

N−1∑
i=j

∞∑
n=0

(
λi
λj

)n{
Pn(0)J̃i,n −

n∑
m=1

Pmn (0)C̃i,nm

}

+

j−1∑
i=0

∞∑
n=0

(
λj
λi

)n+1
{
J̃ ′i,nPn(0)−

n∑
m=1

Pmn (0)C̃ ′i,nm

}

+

j−1∑
i=0

J ′′i,0λ
3
j

]
+

1

2
qrotλ

2
j

− 1

3
λ2jqtid

∞∑
n=2

(
aλj
R

)(n−2)
{
Pn(0)Pn(µs)

+2

n∑
m=1

(n−m)!

(n+m)!
cos(−mφs)Pmn (0)Pmn (µs)

}
.

(26)

From Eqn. (26), we also find the potential at the center of the planet

Ucenter = −
N−1∑
i=0

∞∑
n=0

λi

{
J̃ ′i,n −

n∑
m=1

C̃ ′i,nm

}
. (27)
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Taking the limit of Eqn. (27) as the radius goes to zero yields

Ucenter = lim
ζj→0

Uj(ζj)

= −
N−1∑
i=0

J ′i,n=0

λi
,

(28)

correcting a typographical error in Eqn. 49 of Hubbard (2013). In solving

equations (21) and (24), we also require their analytical derivatives

d [U(ζ, µ, φ, µs, φs)− U(1, 0, 0, µs, φs)]

dζ
=
dU(ζ, µ, φ)

dζ

d [Uj(ζj , µ, φ, µs, φs)− Uj(1, 0, 0, µs, φs)]
dζj

=
dUj(ζj , µ, φ)

dζj
.

(29)

2.3. Gaussian quadrature

The preceding expressions give the gravitational potential and equipotential

shapes, as a function of qrot and qtid, within a layered planet with N concentric

spheroids. In the limit of N → ∞, the solution would apply to an arbitrary

monotonically increasing barotropic relation, ρ(P ).130

For practical applications, we need to find the potential as a multipole ex-

pansion up to a maximum degree nmax. For the results presented here, we

use nmax = 30. The angular integrals in equations (17) – (19) can be eval-

uated using Gaussian quadratures on a two dimensional grid. Here we use

Legendre-Gauss integration to integrate polar angles over L1 = 48 quadra-135

ture points µα = cos(θα), α = 1, 2, . . . L1, with the corresponding weights ωα,

α = 1, 2, . . . L1 over the interval 0 < µ < 1. At any point in the calculation,

we must keep track of radius values for each layer on a 2D grid of quadrature

points ζiαβ . For efficiency, we precalculate the values of all of the Legendre and

associated Legendre polynomials at each polar quadrature point, Pn(µα) and140

Pmn (µα).

For the azimuthal angle, we encounter integrals of the form

Ic,m ≡
∫ 2π

0

f(φ) cos(mφ)dφ

Is,m ≡
∫ 2π

0

f(φ) sin(mφ)dφ

(30)
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when calculating the tesseral harmonics. For these, we use Chebyshev-Gauss

integration with L2 = 96 quadrature points ηβ = cos(φβ), β = 1, 2, . . . L2, with

the corresponding weights ωβ , β = 1, 2, . . . L2 over the interval 0 < φ < 2π

dη = − sin(φ)dφ

dφ = − dη√
1− η2

.
(31)

Using the identity (sin θ)m−k = (1 − µ2)
m−k

2 , the sinusoidal functions can be

expanded as

cosmφ =

m∑
k=0

(
m

k

)
ηk(1− η2)

m−k
2 cos

{π
2

(m− k)
}

sinmφ =

m∑
k=0

(
m

k

)
ηk(1− η2)

m−k
2 sin

{π
2

(m− k)
}
.

(32)

Substituting these into Eqn. (30) and splitting the integral into two intervals

0 < φ < π and π < φ < 2π yields

Ic,m =

m∑
k=0

(
m

k

)
cos
[π

2
(m− k)

]{∫ 1

−1
ηkf(cos−1(−η))

[
1− η2

]m−k
2 dη

−
∫ 1

−1
ηkf(cos−1 η)

[
1− η2

]m−k
2 dη

}
=

m∑
k=0

(
m

k

)
cos
[π

2
(m− k)

]

∗

±
L2∑
β=1

ωβη
k
βf(π − cos−1(ηβ))

[
1− η2β

]m−k
2

−
L2∑
β=1

ωβη
k
βf(cos−1 ηβ)

[
1− η2β

]m−k
2

 ,

(33)

where the sign of the second sum depends on the parity of m. When calculating

the zonal harmonics, the integral Ic,m(f(µα, φβ)) reduces to the axisymmet-

ric solution with m = 0. The zonal harmonics Eqn. (17) can, therefore, be

calculated via the summation

J̃i,n ≈ −
(

3

n+ 3

)(
δiλ

3
i

∑L1

α=1 ωαPn(µα)Ic,0(ζ
(n+3)
iαβ )∑N−1

j=0 δjλ3j
∑L1

α=1 ωαIc,0(ζ3jαβ)

)
(34)
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and the tesseral harmonics likewise via

C̃nm ≈
6(n−m)!

(n+ 3)(n+m)!

(
δiλ

3
i

∑L1

α=1 ωαP
m
n (µα)Ic,m(ζ

(n+3)
iαβ )∑N−1

j=0 δjλ3j
∑L1

α=1 ωαIc,0(ζ3jαβ)

)
. (35)

There are analogous expressions for Is,m and Snm, but these evaluate to zero in

all calculations presented here due to the symmetry of the model.

2.4. Iterative procedure

We begin with initial estimates for the shape of each surface ζiαβ,0 and for

the moments J̃i,n, J̃ ′i,n, J̃ ′′i , C̃i,nm, C̃ ′i,nm, S̃i,nm, and S̃′i,nm. For each iteration t

the level surfaces are then updated using a single Newton-Raphson integration

step.

ζiαβ,t+1 = ζiαβ,t −
f(ζiαβ,t)

f ′(ζiαβ,t)
(36)

where f is the equipotential relation, Equations (21) – (23) for the outermost145

surface and Equations (24) – (26) for interior layers, and f ′ is the first derivative

of that function with respect to ζ, Eqn. (29). The multipole moments are then

calculated for the updated ζiαβ via Equations (17) – (19). These two steps are

repeated until all of the exterior moments, Jn, Cnm and Snm, have converged

such that the difference between successive iterations falls below a specified150

tolerance. Starting with a naive guess for the initial state, a typical calculation

achieves a precision much higher than would be required for comparison with

Juno measurements after about 40 iterations.

In simulations with a finite qrot and qtid, we typically find an initial converged

equilibrium shape with a non-zero, first-order harmonic coefficient C11 of the155

order of qrot · qtid or smaller. This indicates that the center of mass of the

system is shifted slightly along the planet-satellite axis from the origin of the

initial coordinate system. To remove this term, we apply a translation to the

shape function of ∆x = −a ·C11 in the direction of the satellite. This correction

requires approximating the coordinates (µ′, φ′) in the uncorrected frame that160

correspond to the quadrature points µα and φβ in the corrected frame, so that

the correct shape ζ is integrated to find the moments in the corrected frame.
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For a value of qtid similar to the gas giants, this correction yields a body with

C11 on the order of the specified tolerance. For systems with a much larger

qtid (of which there are none in our planetary system), this second-order effect165

might affect the precision of the calculation. The residual effect is below the

numerical noise level for the Saturn models presented in this paper.

2.5. Calculation of the barotrope

We first calculate the density of each uniform layer; for the jth layer we have

ρj,pu =

∑j
i=0 δi∑N−1

k=0 δkλ
3
k

∫ 1

−1 dµ
′
∫ 2π

0
dφ′ζ3k

. (37)

Using this expression, we calculate the total potential Upu on the surface of each

layer and at the center using Equations (23) and (26) – (27). Since the density

is constant between interfaces, the hydrostatic equilibrium relation, Eqn. (1) is

trivially integrated to obtain the pressure at the bottom of the jth layer.

Pj,pu = Pj−1,pu + ρj−1,pu(Uj,pu − Uj−1,pu) (38)

After obtaining a converged hydrostatic-equilibrium model for N spheroids

with the above array using the initial density profile δj , one calculates the arrays

Uj,pu and Pj,pu. Next, one calculates an array of desired densities

ρj,pu,desired = ρ

(
1

2
(Pj+1 + Pj)

)
, (39)

where ρ(P ) is the inverse of the adopted barotrope P (ρ). Finding the difference

between the desired densities of subsequent layers then gives a new array of δj170

for use in the next iteration. In our implementation, it is also necessary to scale

these densities by a constant factor to obtain the correct total mass of the CMS

model.

Self-gravity from the model’s rotational and tidal deformation will cause a

small change in the density profile from that expected for a spherical body.175

In practice, only relatively large changes in the shape of the body will cause

a significant deviation in the density profile. Since qrot � qtid, the influence
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of rotation dominates the shape of the body. For this reason, we can use an

axisymmetric, rotation-only model as described in Hubbard (2013) to find a

converged density structure for a given barotrope and specified qrot, and then180

perform a single further iteration with tides added to find the hydrostatic so-

lution for that density profile. Because the tide-induced density changes are

very small, it is unnecessary to iterate with Eqn. (39) to relax the configura-

tion further for the triaxial figure. Converging the density-pressure profile to a

prescribed barotrope and a fully triaxial figure with relatively large qtid is sig-185

nificantly more computationally expensive, and is irrelevant to any giant planet

in our planetary system.

3. Comparison with test cases

3.1. Single Maclaurin spheroid

The well-known special case of a single constant-density Maclaurin spheroid

is an important test, because it has a closed form, analytical solution to the

theory of figures (Tassoul, 2015). In equilibrium, the Maclaurin spheroid will

have an ellipsoidal shape. In the limit of a low-amplitude tidal perturbation

and zero rotation, the love number for all permitted n is

kn =
3

2(n− 1)
(40)

(Munk and MacDonald, 2009).190

From our simulation results, we calculate the love numbers as

knm = −2

3

(n+m)!

(n−m)!

Cnm
Pmn (0)qtid

( a
R

)2−n
. (41)

For simulations with finite qtid and qrot = 0, we find our calculated knm to be

degenerate with m in accordance with the analytical result. For a given value

of n,

knm =

0, n and m opposite parity

const, n and m same parity.

(42)

16



Figure 2 shows the calculated kn for the non-rotating Maclaurin spheroid as

a function of qtid up to order n = 6, with R/a taken to be that for Tethys

and Saturn. For a small tidal perturbation, we find that kn approaches the

analytical result of Eqn. (40). Conversely, as qrot approaches unity from below,

the love numbers diverge, with kn decreasing for n ≤ 3 and increasing for n > 3.195

The departure from the analytical solution becomes significant (|∆kn| > 0.1)

for −qtid > 10−3, whereas for values representative of the largest Saturnian

satellites, k2 matches the analytic value to within our numerical precision.

In general, the tidal response of a gas giant planet will not be a perturbation

to a perfect sphere, but to a spheroidal shape dominated by rotational flattening.

Therefore, simulation of the tidal response in the absence of rotation is not

generally applicable to real gas giants. When we simulate a Maclaurin spheroid

with both finite qrot and qtid, we find a different behavior for knm as defined by

Eqn. (41). Figure 3 shows the calculated knm for a Maclaurin spheroid with

a constant qtid and a variable qrot. When the magnitude of qrot is comparable

to qtid, the tidal response matches the expected analytical result. However, for

qrot > 10−3, we can see that the degeneracy of knm with m is broken, and all

permitted knm deviate from the expected values. In other words, Eqn. (42)

becomes knm = 0, n and m opposite parity

knm 6= const, n and m same parity,

(43)

and all permitted knm deviate from the expected values. We also note that

these deviations become pronounced earlier for the higher order n.200

3.2. Two concentric Maclaurin Spheroids

Proceeding to more complicated interior structures has proved challenging

for analytical or semi-analytical methods. Even the next simplest model with

two constant-density layers does not have a closed form solution for arbitrary

order n. Folonier et al. (2015) present an extension of Clairaut theory for a205

multi-layer planet under the approximation that the level surfaces are perfect

ellipsoids. Under this approximation, they derive an analytic solution for the
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distortion in response to a tidal perturbation only. This yields an expression for

k2 as a function of two ratios of properties of the two layers, a1/a and ρ0/ρ1.

Table 1 shows a comparison of our calculated k2 with the analytic result from210

Folonier et al. (2015) for a selection of parameters spanning a range of a1/a and

ρ0/ρ1. All of our results using the CMS method differ from those using Clairaut

theory by less than 10−5. This provides an important test of the correctness

of the interior potentials used in our approach. It also indicates that ellipsoids,

while not exact, are a very good approximation for the degree 2 tidal response215

shape in the limit of very small qtid, and qrot = 0.

3.3. Polytrope of index unity

The polytrope of index unity defines a more realistic barotrope that also

lends itself to semi-analytic analyses. It corresponds to the relation

P = Kρ2 (44)

where the polytropic constant K can be chosen to match the planet’s physical

parameters. For a nonrotating n = 1 polytrope, the density distribution is given

by

ρ = ρc
sinπλ

πλ
(45)

where ρc is the density at the center of the planet. To obtain the first approxi-

mation of δj , we differentiate Eqn. (45) by λ:

d(ρ/ρc)

dλ
=

cosπλ

λ
− sinπλ

πλ2
. (46)

We then correct this profile to be consistent with the given qrot via the method

introduced in Section 2.5. Scaling the densities to maintain the total mass of

the planet has a straightforward interpretation for a polytropic barotrope, as it220

is equivalent to changing K.

For the Maclaurin spheroid the lowest degree love number was

k2 =
3

2
. (47)
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Considering only the linear response to a purely rotational perturbation, we

define a general degree 2 linear response parameter Λ2 as

J2 = Λ2qrot. (48)

Whereas Λ2 = 1/2 for the Maclaurin spheroid, for the polytrope of index unity

the analytic result is (Hubbard, 1975)

Λ2 =

(
5

π2
− 1

3

)
. (49)

Considering linear response only, one finds in general

k2 = 3Λ2, (50)

valid in the limit qrot � 1 and qtid � 1, for any barotrope in hydrostatic

equilibrium. Thus, for the polytrope of index unity in this limit,

k2 =
15

π2
− 1 = 0.519817755. (51)

We compare this to a CMS simulation of the n = 1 polytrope model with 128

layers, qrot = 0, qtid = 10−6, and Tethys’ R/a. The simulation results agree with

the expected relation J2 = 2C22 to numerical precision, and yield k2 = 0.519775.

This provides a test of the multi-layer CMS approach subject to a tidal-only225

perturbation. The CMS result matches our Eqn. (51) benchmark to better than

the precision with which we could measure this parameter using the Juno space-

craft. The small difference can be attributed to approximation of a continuous

polytrope by 128 layers in the CMS simulation. Wisdom and Hubbard (2016)

(Eqn. 15) show the relative discretization error of a CMS polytrope model to230

be ∼ 10−3 for N = 128, roughly consistent with our calculated difference.

Similar to the calculations on the Maclaurin spheroid in Section 3.1, we

performed additional N = 128 polytrope simulations with finite qtid and qrot =

0. Once again, we find our calculated knm to be degenerate with m for the tidal-

only simulations, in agreement with Eqn. (42). Figure 4 shows the behavior235

of kn for n ≤ 6 for these tidal-only polytrope simulations. We only present

these results up to qtid ∼ 10−4, because above that value effects of the triaxial
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shape on the pressure-density profile would require iterated relaxation to the

polytropic relation, as discussed in Section 2.5. We observe that realistic values

for qtid have negligible effect on the tidal response. Even for the Io-Jupiter240

system, the effect of finite qtid on knm is near the numerical noise level. The

general behavior is quite similar to the case of the single Maclaurin spheroid.

For small tidal perturbations, the polytrope kn approach values smaller than

the Maclaurin spheroid case, with k2 asymptoting to the analytic limit in Eqn.

(51). Similar to the Maclaurin spheroid, the behavior as qrot increases from245

zero sees kn decrease for n ≤ 3 and increase for n > 3. The deviation from the

low qtid value is also less pronounced for the more realistic polytrope density

distribution than for the Maclaurin spheroid. This is to be expected since there

is less mass concentrated in the outer portion of the polytrope model.

Figure 5 shows the effect of variable qrot on polytrope models with constant250

qtid. Once again, we find that knm degeneracy with respect to m breaks, in

agreement with Eqn. (43), as qrot increases. Although the splitting of knm is

somewhat diminished from the single Maclaurin spheroid results, the deviations

are still significant at large values of qrot ∼ 10−2 consistent with the rapidly-

rotating gas giants. The shift in knm shows a nearly linear increase in magnitude255

with increasing qrot, with potentially observable increases in k2 for both the ice

giant and gas giant planets. The general behavior of knm is very similar between

these tests with two very different density profiles. The relative magnitudes and

directions of all knm up to n = 6 are similar between the two cases. This

indicates that the effect should be ubiquitous in all fast-spinning liquid bodies,260

and relatively insensitive to the density profile of the planet.

4. Saturn’s tidal response

4.1. Saturn interior models

Lainey et al. (2016) present the first determination of the love number k2

for a gas giant planet using a dataset of astrometric observations of Saturn’s265

coorbital moons. Their observed value k2 = 0.390±0.024 is much larger than the
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theoretical prediction of 0.341 by Gavrilov and Zharkov (1977). Here we present

calculations suggesting that the enhancement of Saturn’s k2 is the result of the

influence of the planet’s rapid rotation, rather than evidence for a nonstatic

tidal response or some other breakdown of the hydrostatic theory.270

For the purposes of this calculation, we use two relatively simple models for

Saturn’s interior structure, fitted to physical parameters determined by the Voy-

ager and Cassini spacecraft. Table 2 summarizes the physical parameters used

in our models. We fit our models to minimize the difference in zonal harmon-

ics from those determined from Cassini (Jacobson et al., 2006). We consider275

two different internal rotation rates based on magnetic field measurements from

Voyager (Desch and Kaiser, 1981) and Cassini (Giampieri et al., 2006), which

lead to two different values of qrot.

In principle, the tidal response of a heterogeneous body will also be different

for satellites with different sizes and orbital parameters. To address this, we280

also consider the effect of two major satellites, Tethys and Dione, with different

values for qtid and R/a (Archinal et al., 2011). These two satellites, along with

their respective coorbital satellites, were used in the determination of k2 by

Lainey et al. (2016).

For the interior density profile, our first model assumes a constant-density285

core surrounded by a polytropic envelope following Eqn. (44). We constrain the

radius of the core to be acore/a = 0.2, leaving the mass mcore/M as a parameter

which is adjusted to match the observed Saturn J2. The fitted model using the

Voyager rotation period matches both J2 and J4 to within the error bars, but

with the Cassini rotation period it matches only J2. In hydrostatic equilibrium,290

the two different rotation rates lead to differences in shape of equipotential

surfaces and, therefore, also to different best fits to mcore/M . The envelope

polytrope is scaled in order to maintain M . Figure 6 shows the density profile

of one such model. We consider a model with a total of 128 layers, for which

the CMS model has a discretization error (Wisdom and Hubbard, 2016) smaller295

than uncertainty in the observations of Saturn’s k2.

Our second model has only four spheroids (N = 4), also depicted in Figure
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6, with densities and radii adjusted to yield agreement with both observed J2

and observed J4 as given in Table 2.

These two simple models, while not particularly realistic, capture the major300

features of Saturn’s internal structure. It is well established that the details of

Saturn’s internal structure are largely degenerate, with a wide range of possible

core sizes and densities adequately matching the few observational constraints

(Kramm et al., 2011; Helled and Guillot, 2013; Nettelmann et al., 2013). The

qualitative similarities between our Maclaurin spheroid and polytrope simu-305

lations (Sections 3.1 and 3.3) indicate that the rotational enhancement of k2

should be a robust prediction regardless of the particular details of the interior

profile. A comparison between our polytrope plus core and four layer models

provides another test of the sensitivity of k2 to interior structure. We do not

consider here the influence of differential rotation (Hubbard, 1982; Kong et al.,310

2013; Cao and Stevenson, 2015; Wisdom and Hubbard, 2016), which might have

an influence on the gravitational response in comparison to the solid-body rota-

tion considered here. However, since the effect of realistic deep flow patterns on

the low order zonal harmonics is small (Cao and Stevenson, 2015), we expect

that they would cause negligible further changes in the rotational enhancement315

of k2.

4.2. Calculated k2 for Saturn

We take our baseline model to be the N = 128 CMS core plus polytrope

model with physical parameters fitted to Cassini observations. Figure 7 shows

the calculated zonal harmonics Jn up to order n = 30. The even Jn decrease320

smoothly in magnitude with increasing n, with the slope decreasing at higher n.

Jn is negative when n is divisible by 4, and positive otherwise. The calculated

Jn are essentially indistinguishable from those calculated for the rotation only

case with the same qrot, as is expected given qrot � qtid.

Figure 8 shows the magnitude of Cnm for the core plus polytrope model325

with Cassini rotation. Changing the number of layers, satellite parameters

or the rotation rate to the Voyager value leads to a shift in the values, but
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the relative magnitudes and signs of Cnm remain approximately the same. In

the same figure, we also compare the Cnm for a non-rotating planet having the

same density profile ρ(λi). Here we see significant shifts in the magnitudes Cnm,330

although the signs remain the same. For the rotating model, Cnm is similar for

most points where n = m, but with magnitudes significantly larger when m < n.

The only exception to this trend is C31 which is lower for the rotating model.

These results are all broadly consistent with the splitting of knm observed for

the polytrope in Section 3.3.335

Table 3 summarizes our calculated values for k2 for 5 different models. The

identifying labels “Cassini” and “Voyager” use the observed rotation rate from

Jacobson et al. (2006), and Desch and Kaiser (1981) respectively, while “non-

rotating” is a model with qrot = 0. The “non-rotating” model uses the same

“Cassini” density profile, meaning that its density-pressure profile has not been340

relaxed to be in equilibrium for zero rotation. It does, however, allow us to

quantify the effect of rotation on the tidal response by comparison with the

“Cassini” model. “Tethys” and “Dione” refer to models with the satellite pa-

rameters qtid and R/a corresponding to those satellites, whereas “no tide” is

an analogous model with finite qrot only. “N = 128” uses the polytrope outer345

envelope with constant density inner core, whereas “N = 4” is the model which

independently adjusts layer densities to match the observed J2 and J4.

Each of the rotating models yields a calculated k2 value matching the ob-

servation of Lainey et al. (2016) within their error bars. We find that the

difference between the k2 values associated with the satellites Tethys and Dione350

is ∼0.0003, well below the current sensitivity limit. Using the ∼2.5% higher

“Voyager” rotation rate leads to a decrease of ∼0.01 in k2.

In Table 3, we also show the calculated J2, J4 and J6 following the conver-

gence of the gravitational field in response to the tidal perturbation. For the

core plus polytrope model, the rotation rate from Voyager is more consistent355

with the J4 and J6 from Jacobson et al. (2006). This doesn’t necessarily mean

that the Voyager rotation rate is more correct, just that it allows a better fit for

our simplified density model. Nonetheless, our fitted gravitational moments are
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much closer to each other than to those from the pre-Cassini model of Gavrilov

and Zharkov (1977).360

In comparison to the other models, the outlier is the non-rotating model,

which underestimates the k2 by ∼ 9.4% compared to a rotating body with the

same density distribution. This calculated enhancement accounts for most of the

difference between the observation of k2 = 0.390± .024 (Lainey et al., 2016) and

the classical theory result of 0.341 (Gavrilov and Zharkov, 1977). We attribute365

our non-rotating model’s larger k2 to our different interior model which matches

more recent constraints on Saturn’s zonal gravitational moments J2–J6.

In addition to the difference in k2, the non-rotating model also predicts

slightly different tidal components of the zonal gravitational moments. Finding

the difference in values between the “no tide” model and the analogous tidal370

model yields J2,tid = 1.7254 × 10−10, J4,tid = −2.732 × 10−11 and J6,tid =

4.14 × 10−12, which are different than calculated zonal moments for the “non-

rotating” model.

It may be initially surprising that the four-layer model yields a k2 value

only ∼0.0007 different than the polytrope model. The two models represent375

two very different density structures that lead to similar low-order zonal har-

monics. The fact these two models are indistinguishable by their k2 suggests

that the tidal response of Saturn is only a weak function of the detailed density

structure within the interior of the planet. This behavior can be understood by

referring to Eqn. (50), which shows that to lowest order, k2 and Λ2 contain the380

same information about interior structure. This statement is not true when we

include a nonlinear response to rotation and tides. Thus, future high-precision

measurements of the knm of jovian planets, say to better than 0.1%, will be

useful for constraining basic parameters such as the interior rotation rate of the

planet, and may help to break the current degeneracy of interior density pro-385

files. The theory presented in this paper is intended to match the anticipated

precision of such future measurements.
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5. Summary

The CMS method for calculating a self-consistent shape and gravitational

field of a static liquid planet has been extended to include the effect of a tidal390

potential from a satellite. This is expected to represent the largest contribution

to the low-order tesseral harmonics measured by Juno and future spacecraft

studies of the gas giants. This approach has been benchmarked against analyti-

cal results for the tidal response of the Maclaurin spheroid, two constant density

layers, and the polytrope of index unity.395

We highlight for the first time the importance of the high rotation rate on

the tidal response of the gas giants. CMS simulations of the tidal response on

bodies with large rotational flattening show significant deviation in the tesseral

harmonics of the gravitational field as compared to simulations without rotation.

This includes splitting of the love numbers into different knm for any given order400

n > 2. Meanwhile, it leads to an observable enhancement in k2 compared to a

non-rotating model.

This rotational enhancement of the k2 love number for a simplified inte-

rior model of Saturn agrees with the recent observational result (Lainey et al.,

2016), which found k2 to be much higher than previous predictions. Our pre-405

dicted values of k2 are robust for reasonable assumptions of interior structure,

rotation rate and satellite parameters. The Juno spacecraft is expected to mea-

sure Jupiter’s gravitational field to sufficiently high precision to measure lower

order tesseral components arising from Jupiter’s large moons, and we predict

an analogous rotational enhancement of k2 for Jupiter. Our high-precision tidal410

theory will be an important component of the search for non-hydrostatic terms

in Jupiter’s external gravity field.
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a tidal perturbation from a satellite.
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Table 1. Comparing two-layer models

a1/a ρ0/ρ1 k2 CMS k2 Clairaut

0.1 0.5 1.496283 1.496286

0.3 0.5 1.411183 1.411185

0.5 0.1 0.465714 0.465716

0.5 0.3 0.947967 0.947969

0.5 0.5 1.205309 1.205311

0.5 0.7 1.360183 1.360186

0.5 0.9 1.461667 1.461669

0.7 0.5 1.057405 1.057407

0.9 0.5 1.217192 1.217194

Note. — Calculated k2 for a two layer

model with qtid = 10−6, qrot = 0 and

Tethy’s R/a, for chosen values of ratio of

radii and densities of the two layers. Re-

sults closely match the approximation us-

ing Clairaut theory in Folonier et al. (2015),

Eqn. 41.
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Table 2. Saturn Model Parameters

Cassini Voyager

GM 3.7931208× 107 a · · · (km3/s2)

a 6.0330× 104 a · · · (km)

J2 × 106 16290.71 a · · ·

J4 × 106 −935.83 a · · ·

J6 × 106 86.14 a · · ·

qrot 0.1516163 b 0.1553029 c

rcore/a 0.2 · · ·

mcore/M 0.133146 0.140478

Tethys Dione

qtid −2.791103× 10−8 d −2.364582× 10−8 d

R/a 4.8892 d 6.2620 d

References. — a. Jacobson et al. (2006), b. Giampieri et al.

(2006), c. Desch and Kaiser (1981), d. Archinal et al. (2011)

Note. — Identical parameters for Saturn are used with the

exception of qrot, for which the rotation rate from both Cassini

and Voyager are considered. A constant core density is fitted to

match J2, J4, and J6 for a converged figure.
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Table 3. Calculated Saturn tidal responses

model gravitational moment normalized moment

Cassini J2 1.62907100025× 10−2 J2/qrot 0.10744694879478

no tide J4 −9.2027941201× 10−4 J4/qrot −0.606979160784× 10−2

N = 128 J6 8.014294995× 10−5 J6/qrot 0.5285905549× 10−3

non-rotating C22 8.5288× 10−10 k2 0.36669

Tethys J2 1.70576× 10−9 J2/qrot · · ·

N = 128 J4 −1.351× 10−11 J4/qrot · · ·

J6 2.2× 10−13 J6/qrot · · ·

Cassini C22 9.6070× 10−10 k2 0.41304

Tethys J2 1.629071017501× 10−2 J2/qrot 0.1074469499328

N = 128 J4 −9.2027943932× 10−4 J4/qrot −0.60697917880× 10−2

J6 8.01429541× 10−5 J6/qrot 0.5285905822× 10−3

Voyager C22 9.4136× 10−10 k2 0.40473

Tethys J2 1.629071048760× 10−2 J2/qrot 0.1048963407747

N = 128 J4 −9.3570887868× 10−4 J4/qrot −0.60250556585× 10−2

J6 8.30176108× 10−5 J6/qrot 0.534552720× 10−3

Cassini C22 8.1325× 10−10 k2 0.41272

Dione J2 1.629071019035× 10−2 J2/qrot 0.1074469500340

N = 128 J4 −9.2027943688× 10−4 J4/qrot −0.60697917719× 10−2

J6 8.01429534× 10−5 J6/qrot 0.528590578× 10−3

Cassini C22 9.6219× 10−10 k2 0.41368

Tethys J2 1.629071019560× 10−2 J2/qrot 0.1074469500686

N = 4 J4 −9.3583002600× 10−4 J4/qrot −0.61723571821× 10−2

J6 8.61400043× 10−5 J6/qrot 0.568144705× 10−3

32



10-6 10-5 10-4 10-3 10-2 10-1

log(−qtid)
0.0

0.5

1.0

1.5

2.0

k
n

qrot =0
k2

k3

k4

k5

k6

Figure 2 The effect of tidal perturbation strength on the tidal love numbers

of a non-rotating Maclaurin spheroid up to order 6. The love numbers kn are

degenerate with respect to m. The orbital radius is taken to be that of Tethys.
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Figure 3 The effect of rotation rate on the tidal love numbers of Maclaurin

spheroid up to order 6. The knm for a given n are found to split at high rotation

rates. qtid is kept constant at 1.0 × 10−6, and the orbital radius is taken to be

that of Tethys.
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Figure 4 The effect of tidal perturbation strength on the tidal love numbers of

a non-rotating planet with an N = 1 polytrope equation of state, up to order

6. ∆kn is the shift in love number kn from the limit of low qtid. The love

numbers kn are degenerate with respect to m. The orbital radius is taken to be

that of Tethys. The vertical, dashed gray lines show qtid for Tethys-Saturn and

Io-Jupiter.
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Figure 5 Top: The effect of rotation rate on the tidal love numbers of a planet

with an N = 1 polytrope equation of state, up to order 6. The knm for a given

n are found to split at high rotation rates. qtid is kept constant at 1.0 × 10−6,

and the orbital radius is taken to be that of Tethys. The vertical, dashed gray

lines show qrot for Neptune, Uranus, Jupiter and Saturn. Bottom: Shift in knm

as a function of qrot on a linear scale.
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Figure 6 Density structure of simple Saturn models. The blue curve shows an

N = 128 model having a dense core within r = 0.2a and a polytropic outer

envelope. The red curve shows an N = 4 model with the same core constraints.

Both models have densities adjusted to match J2 measured by Cassini (Jacobson

et al., 2006).
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Figure 7 The zonal harmonics Jn for the Cassini Saturn model. Positive values

are shown as filled and negative as empty.
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Figure 8 In red, the tesseral harmonics Cnm for the Cassini Saturn model. In

black, Cnm for the same density profile and same value of qtid, but with qrot = 0.

Positive values are shown as filled and negative as empty.

39


	Introduction
	Concentric Maclaurin Spheroid method with tides
	Model parameters
	Calculation of gravitational potential
	Gaussian quadrature
	Iterative procedure
	Calculation of the barotrope

	Comparison with test cases
	Single Maclaurin spheroid
	Two concentric Maclaurin Spheroids
	Polytrope of index unity

	Saturn's tidal response
	Saturn interior models
	Calculated k2 for Saturn

	Summary

