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ABSTRACT

In anticipation of improved observational data for Jupiter’s gravitational field from the Juno space-

craft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio com-

puter simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms

using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy ex-

pansions used in the theory of figures. Our method captures terms arising from the coupled tidal and

rotational perturbations, which we find to be important for a rapidly-rotating planet like Jupiter. Our

predicted static tidal Love number k2 = 0.5900 is ∼10% larger than previous estimates. The value

is, as expected, highly correlated with the zonal harmonic coefficient J2, and is thus nearly constant

when plausible changes are made to interior structure while holding J2 fixed at the observed value.

We note that the predicted static k2 might change due to Jupiter’s dynamical response to the Galilean

moons, and find reasons to argue that the change may be detectable, although we do not present here

a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal

response will be essential for interpreting Juno observations and identifying tidal signals from effects

of other interior dynamics in Jupiter’s gravitational field.
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1. INTRODUCTION

The Juno spacecraft began studying Jupiter at close

range following its orbital insertion in early July 2016.

The unique low-periapse polar orbit and precise Doppler

measurements of the spacecraft’s acceleration will yield

parameters of Jupiter’s external gravitational field to

unprecedented precision, approaching a relative preci-

sion of ∼ 10−9 (Kaspi et al. 2010). In addition to pro-

viding important information about the planet’s inte-

rior mass distribution, the non-spherical components of

Jupiter’s gravitational field should exhibit a detectable

signal from tides induced by the planet’s closer large

moons, possibly superimposed on signals from mass

anomalies induced by large-scale dynamic flows in the

planet’s interior (Cao & Stevenson 2015; Kaspi et al.

2010; Kaspi 2013).

As a benchmark for comparison with expected Juno

data, Hubbard & Militzer (2016) constructed static in-

terior models of the present state of Jupiter, using a

barotropic pressure-density P (ρ) equation of state for a

near-solar mixture of hydrogen and helium, determined

from ab intio molecular dynamics simulations (Militzer

2013; Militzer & Hubbard 2013). In this paper, we ex-

tend those models to predict the static tidal response of

Jupiter using the three-dimensional concentric Maclau-

rin spheroid (CMS) method (Wahl et al. 2016).

The Hubbard & Militzer (2016) preliminary Jupiter

model is an axisymmetric, rotating model with a self-

consistent gravitational field, shape and interior density

profile. It is constructed to fit pre-Juno data for the
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degree-two zonal gravitational harmonic J2 (Jacobson

2003). While solutions exist matching pre-Juno data

for the degree-four harmonic J4, models using the ab

initio EOS required unphysical compositions with den-

sities lower than that expected for the pure H-He mix-

ture. As a result, the preferred model of Hubbard & Mil-

itzer (2016) predicts a J4 with an absolute value above

pre-Juno error bars. Preliminary Jupiter models con-

sider the effect of a helium rain layer where hydrogen

and helium become immiscible (Stevenson & Salpeter

1977b). The existence of such a layer has important

effects for the interior structure of the planet, since it

inhibits convection and mixing between the molecular

exterior and metallic interior portions of the H-He en-

velope. This circumstance provides a physical basis for

differences in composition and thermal state between

the inner and outer portions of the planet. Adjustments

of the heavy element content and entropy of the P (ρ)

barotrope allow identification of an interior structure

consistent with both pre-Juno observational constraints

and the ab initio material simulations. The preferred

preliminary model predicts a dense inner core with ∼12

Earth masses and an inner hydrogen-helium rich enve-

lope with ∼3× solar metallicity, using an outer envelope

composition matching that measured by the Galileo en-

try probe.

Although the Cassini Saturn orbiter was not designed

for direct measurements of the high degree and or-

der components of Saturn’s gravitational field, the first

observational determination of Saturn’s second degree

Love number k2 was recently reported by Lainey et al.

(2016). This study used an astrometric dataset for Sat-

urn’s co-orbital satellites to fit k2, and identified a value

significantly larger than the theoretical prediction of

Gavrilov & Zharkov (1977). The non-perturbative CMS

method obtains values of k2 within the observational er-

ror bars for simple models of Saturn’s interior, indicating

the high value can be explained completely in terms of

static tidal response (Wahl et al. 2016). The pertur-

bative method of Gavrilov & Zharkov (1977) provides

an initial estimate of tidally induced terms in the grav-

itational potential, but neglects terms on the order of

the product of tidal and rotational perturbations. Wahl

et al. (2016) demonstrated, that for the rapidly-rotating

Saturn, these terms are significant and sufficient to ex-

plain the observed enhancement of k2.

2. BAROTROPE

We assume the liquid planet is in hydrostatic equilib-

rium,

∇P = ρ∇U, (1)

where P is the pressure, ρ is the mass density and U

the total effective potential. Modeling the gravitational

field of such a body requires a barotrope P (ρ) for the

body’s interior. In this paper, we use the barotrope

of Hubbard & Militzer (2016), constructed from ab ini-

tio simulations of hydrogen-helium mixtures (Militzer

2013; Militzer & Hubbard 2013). The P (ρ) relation is

interpolated from a grid of adiabats determined from

density functional molecular dynamics (DFT-MD) sim-

ulations using the Perdew-Burke-Ernzerhof (PBE) func-

tional (Perdew et al. 1996) in combination with a ther-

modynamic integration technique. The simulations were

performed with cells containing NHe = 18 helium and

NH = 220 hydrogen atoms, corresponding to a solar-like

helium mass fraction Y0 = 0.245. An adiabat is charac-

terized by an entropy per electron S/kB/Ne (Militzer &

Hubbard 2013), where kB is Boltzmann’s constant and

Ne is the number of electrons. Hereafter we refer to this

quantity simply as S.

In our treatment, the term “entropy” and the symbol

S refer to a particular adiabatic temperature T (P ) re-

lationship for a fixed composition H-He mixture (Y0 =

0.245) as determined from the ab initio simulations. The

value of S in the outer portion of the planet is deter-

mined by matching the T (P ) measurements from the

Galileo atmospheric probe (see Figure 1). This adia-

batic T (P ) is assumed to apply to small perturbations

of composition, in terms of both helium fraction and

metallicity. Hubbard & Militzer (2016) demonstrated

that these compositional perturbations have a negligible

effect on the temperature distribution in the interior.

The density perturbations to the equation of state are

estimated using the additive volume law,

V (P, T ) = VH(P, T ) + VHe(P, T ) + VZ(P, T ), (2)

where the total volume V is the sum of partial volumes

of the main components VH and VHe, the heavy element

component VZ . Hubbard & Militzer (2016) demon-

strated that this leads to a modified density ρ in terms

of the original H-He EOS density ρ0,

ρ0

ρ
=

1− Y − Z
1− Y0

+
ZY0 + Y − Y0

1− Y0

ρ0

ρHe
+ Z

ρ0

ρZ
, (3)

in which all densities are are evaluated at the same T (P )

and Y0 is the helium fraction used to calculate the H-He

equation of state.

The choice of equation of state effects the density

structure of the planet, and consequently, the distribu-

tion of heavy elements that is consistent with observa-

tional constraints. For comparison, we also construct

models using the Saumon et al. (1995) equation of state

(SCvH) for H-He mixtures, which has been used exten-

sively in giant planet modeling.

Ab initio simulations show that, at the temperatures

relevant to Jupiter’s interior, there is no distinct, first-

order phase transition between molecular (diatomic, in-



3

sulating) hydrogen to metallic (monatomic, conducting)

hydrogen (Vorberger et al. 2007). In the context of a

planet-wide model, however, the transition takes place

over the relatively narrow pressure range between ∼1-

2 Mbar. Within a similar pressure range an immisci-

ble region opens in the H-He phase diagram Morales

et al. (2013), which under correct conditions allows for

a helium rain layer Stevenson & Salpeter (1977b,a). By

comparing our adiabat calculations to the Morales et al.

(2013) phase diagram, we predict such a helium rain

layer in present-day Jupiter (Hubbard & Militzer 2016).

The extent of this layer in our models is highlighted in

Figure 1. While the detailed physics involved with the

formation and growth of a helium rain layer is poorly

understood, the existence of a helium rain layer has a

number of important consequences for the large-scale

structure of the planet. In our models, we assume this

process introduces a superadiabatic temperature gradi-

ent and a compositional difference between the outer,

molecular layer and inner, metallic layer.
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Figure 1. The barotrope used in preferred model Jupiter
‘DFT-MD 7.13’. Top: temperature-pressure relationship
for a hydrogen-Helium mixture with Y=0.245, with a en-
tropy S = 7.08 at pressures below the demixing region, and
S = 7.13 at pressures above the demixing region. The helium
demixing region is shown by the gap and shaded region. The
red line shows measurements from the Galileo probe. Bot-
tom: density-pressure relationship for the same barotrope.

In summary, the barotrope and resulting suite of ax-

isymmetric Jupiter models that we use in this investiga-

tion are identical to the results presented by Hubbard &

Militzer (2016). Each model has a central core mass and

envelope metallicities set to fit the observed J2 (Jacob-

son 2003), with densities corrected to be consistent with

non-spherical shape of the rotating planet. Since tidal

corrections to a rotating Jupiter model are of order 10−7,

see Table 1 and the following section, it is unnecessary

to re-fit the tidally-perturbed models to the barotrope

assumed for axisymmetric models.

The physical parameters for each of these models is

summarized in Table 2. The gravitational moments

at the planet’s surface are insensitive the precise dis-

tribution of extra heavy-element rich material within

the innermost part of the planet. For instance, we can-

not discern between dense rocky core with a and that

same heavy material dissolved in metallic hydrogen and

spread over a larger, but still restricted volume. Main-

taining a constant core radius is computationally conve-

nient when finding a converged core mass to J2, since it

requires no modification of the radial grid used through

the envelope. For this reason we consider models with

a constant core radius of 0.15a. Decreasing this radius

below 0.15a for a given core mass has a negligible ef-

fect on the calculated gravitational moments (Hubbard

& Militzer 2016). Figure 2 shows the density profile

for two representative models. In general, models using

the DFT-MD equation of state lead to a larger central

core and a lower envelope metallicity than those using

SCvH. Hubbard & Militzer (2016) also noted that these

models predict a value for J4 outside the reported ob-

servational error bars (Jacobson 2003), since they would

require unrealistic negative values of Z to match both

J2 and J4.

3. STATIC TIDE CALCULATIONS

To calculate the gravitational moments, we use the

non-perturbative concentric Maclaurin spheroid method

which was introduced by Hubbard (2012, 2013) and ex-

tended to three dimensions by Wahl et al. (2016). In

this method, the density structure is parameterized by

N nested constant-density spheroids. For a given set

of spheroids, the gravitational field is calculated as a

volume-integrated function of all of the spheroids. The

method then iterates to find the shape of each spheroid

such that the surface of each is an equipotential surface

under the combined effect of the planet’s self-gravity,

the centrifugal potential from rotation and the external

gravitational perturbation from a satellite. The result is

a model with self-consistent shape, internal density dis-

tribution and gravitational field described up to a chosen

harmonic degree and order limit, nlim.

The non-spherical components of the gravitational po-
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Figure 2. Density structure of Jupiter models (the plane-
tary unit of density ρpu = M/a3). The red curve shows our
preferred model based on ab initio calculations. The blue
curve uses the Saumon and Chabrier equation of state. The
shaded area denotes the helium demixing region. Both mod-
els have N = 511 layers and a dense core within r = 0.15a.
Constant core densities are adjusted to match J2 as measured
by fits to Jupiter flyby Doppler data (Jacobson 2003).

tential are described by two non-dimensional numbers

qrot =
ω2a3

GM
, (4)

describing the relative strength of the rotational pertur-

bation, and

qtid = −3msa
3

MR3
, (5)

the analogous quantity for the tidal perturbation. Here

G is the universal gravitational constant, M is the total

mass of the planet, a is the maximum equatorial radius,

ms is the mass of the satellite and R is the orbital dis-

tance of the satellite. The parameterization is completed

by a third non-dimensional number R/a, representing

the ratio of satellite distance to equatorial radius. For

non-zero qtid, the calculated figure changes from a ax-

isymmetric about the rotational axis to a fully triaxial

spheroid.

From our CMS simulations, we find the zonal Jn and

tesseral Cnm and Snm gravitational harmonics. These

harmonics sample slightly different regions of the planet.

Figure 3 show the relative weight of the contribution

to the low order Jn and Cnm as a function of non-

dimensional radius. In the case of Jupiter and the

Galilean satellites, qrot � qtid, and tidal perturbations

from multiple moons can be linearly superposed. More-

over, all of the gravitationally important moons have

orbits with nearly zero inclination. This allows us to

treat a simplified case where we consider a single satellite

with a fixed position in the equatorial plane, at angu-

lar coordinates µ = cos θ = 0 (where θ is the satellite’s

colatitude measured from Jupiter’s pole), and φ = 0

(the satellite’s Jupiter-centered longitude). By symme-

try, this configuration constrains Snm = 0, and the tidal

Love numbers can then be determined from

knm = −2

3

(n+m)!

(n−m)!

Cnm

Pm
n (0)qtid

( a
R

)2−n

, (6)

where Pm
n (0) is the associated legendre polynomial eval-

uated at µ = 0. In this paper we perform independent

calculations for the three satellites with the largest qtid:

Io, Europa and Ganymede (see Table 1).
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Figure 3. Top: Relative contribution of spheroids to ex-
ternal gravitational zonal harmonic coefficients up to order
8. Bottom: Relative contribution of spheroids to to exter-
nal gravitational tesseral coefficients up to order 4. Tesseral
moments of the same order (i.e. C31 and C33) have indis-
tinguishable radial distributions. Values normalized so that
each harmonic integrates to unity. The shaded area denotes
the helium demixing region.

For a tidally-perturbed non-rotating body, knm is de-

generate with respect to m. However, Wahl et al. (2016)

found that a large rotational bulge breaks this degener-

acy. This leads to unexpectedly large values for some of

the higher order knm. In the case of a rapidly-rotating

gas giant, the predicted splitting of the knm and shift

of k22 is well above the expected uncertainty of Juno

measurements.

4. RESULTS

4.1. State Mixing for Static Love Numbers

In the CMS method applied to tides, we calculate the

tesseral harmonics Cnm directly, and the Love numbers

knm are then calculated using Eq. 6. For the common
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tidal problem where qtid and qrot are carried to first or-

der perturbation only, this definition of knm removes all

dependence on the small parameters qtid and a/R, which

is convenient for calculating the expected tidal tesseral

terms excited by satellites of arbitrary masses at arbi-

trary orbital distances. However, the high-precision nu-

merical results from our CMS tidal theory reveal that

when qrot ≈ 0.1, as is the case for Jupiter and Saturn,

the mixed excitation of tidal and rotational harmonic

terms in the external gravity potential has the effect of

introducing a small but significant dependence of k22 on

a/R; see Fig. 4. In the absence of rotation, the CMS

calculations yield results without any state mixing, and

the knm are, as expected, constant with respect to a/R.

It is important to note this effect on the static Love

numbers because, as we discuss below, dynamical tides

can also introduce a dependence on a/R via differing

satellite orbital frequencies.
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Figure 4. Predicted k2 Love numbers for Jupiter mod-
els plotted against J4. The favored interior model ‘DFT-
MD 7.13’ with a tidal perturbation from Io is denoted by the
red star. The other interior models with barotropes based
on the DFT-MD simulations (blue) have k2 forming a lin-
ear trend with J4. Models using the Saumon and Chabrier
barotrope (green) plot slightly above this trend. The of k2
for a single model ‘DFT-MD 7.13’ with tidal perturbations
from Europa and Ganymede (yellow) show larger differences
than any resulting from interior structure.

4.2. Calculated Static Tidal Response

The calculated zonal harmonics Jn and tidal Love

numbers knm for all of the Jupiter models with Io satel-

lite parameters are shown in Tab. 3. Our preferred

Jupiter model has a calculated k2 of 0.5900. In all

cases, these Love numbers are significantly different from

those predicted for a non-rotating planet (see Tab. 4).

Fig. 5 shows the different tesseral harmonics Cnm cal-

culated with and without rotation. For a non-rotating

planet with identical density distribution to the pre-

ferred model we find a much smaller k22 = 0.53725.

Juno should, therefore, be able to test for the existence

of the rotational enhancement of the tidal response.
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Figure 5. The tesseral harmonic magnitude Cnm for the
‘DFT MD 7.13’ Jupiter model with a tidal perturbation cor-
responding to Io at its average orbital distance. Black: the
values calculated with Jupiter’s rotation rate; red: the val-
ues for a non-rotating body with identical layer densities.
Positive values are shown as filled and negative as empty.

The effect of the interior mass distribution for a suite

of realistic models has a minimal effect on the tidal re-

sponse. Most models using the DFT-MD barotrope are

within a 0.0001 range of values. The one outlier be-

ing the model constrained to match J4 with unphysi-

cal envelope composition. The models using the SCvH

barotrope yields slightly lower, but still likely indistin-

guishable values of k22. The higher order harmonics

show larger relative differences between models, but still

below detection levels. Regardless, the zonal harmonic

values are more diagnostic for differences between inte-

rior models than the tidal Love numbers. Fig. 4 sum-

marizes these results, and shows that the calculated k22

value varies approximately linearly with J4. If Juno

measures higher order tesseral components of the field,

it may be able to verify a splitting of the knm Love num-

bers with different m, for instance, a predicted difference

between k31 ∼ 0.19 and k33 ∼ 0.24.

In addition, we find small, but significant, differences

between the tidal response between Jupiter’s most in-

fluential satellites. Fig. 6 shows the calculated Cnm

for simulations with Io, Europa and Ganymede. We at-

tribute the dependence on orbital distance to the state

mixing described in Section 4.1. This leads to a differ-

ence in k22 between the three satellites (Tab. 4) that

may be discernible in Juno’s measurements.

5. CORRECTION FOR DYNAMICAL TIDES

5.1. Small Correction for Non-rotating Model of

Jupiter
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Figure 6. The tesseral harmonic magnitude Cnm for the
‘DFT MD 7.13’ Jupiter model with a tidal perturbation cor-
responding to different satellites: Io (black), Europa (red)
and Ganymede (blue).

The general problem of the tidal response of a

rotationally-distorted liquid Jovian planet to a time-

varying perturbation from an orbiting satellite has not

been solved to a precision equal to that of the static

CMS tidal theory of Wahl et al. (2016) and this paper.

However, an elegant approach based on free-oscillation

theory has been applied to the less general problem of a

non-rotating Jovian planet perturbed by a satellite in a

circular orbit (Vorontsov et al. 1984). Let us continue to

use the spherical coordinate system (r, θ, φ), where r is

radius, θ is colatitude and φ is longitude. Assume that

the satellite is in the planet’s equatorial plane (θ = π/2)

and orbits prograde at angular rate ΩS . For a given

planet interior structure, Vorontsov et al. (1984) first

obtain its eigenfrequencies ω`mn and orthonormal eigen-

functions u`mn(r, θ, φ), projected on spherical harmon-

ics of degree ` and orderm (the index n = 0, 1, 2, ... is the

number of radial nodes of the eigenfunction). Note that

in their convention, oscillations moving prograde (in the

direction of increasing φ) have negative m, whereas some

authors, e.g. Marley & Porco (1993) use the opposite

convention.

Treating the tidal response as a forced-oscillation

problem, equation (24) of Vorontsov et al. (1984), the

vector tidal displacement ξ then reads

ξ(r, t) = −
∑
`,m,n

(u`,m,n,∇ψr
`m)

ω2
`mn −m2Ω2

S

e−imΩSt, (7)

where (u`,m,n,∇ψr
`m) is the integrated scalar product of

the vector displacement eigenfunction u`mn(r, θ, φ) and

the gradient of the corresponding term of the satellite’s

tidal potential ψr
`m(r, θ, φ, t), viz.

(u`,m,n,∇ψr
`m) =

∫
dV ρ0(r)(u`,m,n · ∇ψr

`m). (8)

The integral is taken over the entire spherical volume of

the planet, weighted by the unperturbed spherical mass

density distribution ρ0(r).

Vorontsov et al. (1984) then show that, for the nonro-

tating Jupiter problem, the degree-two dynamical Love

number k2,d is determined to high precision (∼ 0.05%)

by off-resonance excitation of the ` = 2,m = 2, n = 0

and ` = 2,m = −2, n = 0 oscillation modes, such that

k2,d =
ω2

220

ω2
220 − (2ΩS)2

k2, (9)

noting that ω220 and ω2−20 are equal for nonrotating

Jupiter (all Love numbers in the present paper written

without the subscript d are understood to be static).

For a Jupiter model fitted to the observed value of J2,

Vorontsov et al. (1984) set ΩS = 0 to obtain k2 = 0.541,

within 0.7% of our nonrotating value of 0.53725 (see Ta-

ble 4). Setting ΩS to the value for Io, Eq. 9 predicts that

k2,d = 0.547, i.e. the dynamical correction increases k2

by 1.2%. This effect would be only marginally detectable

by the Juno measurements of Jupiter’s gravity, given the

expected observational uncertainty.

5.2. Dynamical Effects for Rotating Model of Jupiter

For a more realistic model of Jupiter tidal interactions,

the dynamical correction to the tidal response might be

larger, and therefore, more detectable. We have already

shown (Table 4) that inclusion of Jupiter’s rotational

distortion increases the static k2 by nearly 10% above

the non-rotating static value for a spherical planet. In

this section, we note that Jupiter’s rapid rotation may

also change Jupiter’s dynamic tidal response, by a factor

that remains to be calculated.

In a frame co-rotating with Jupiter at the rate

ΩP = 2π/35730s, the rate at which the subsatellite

point moves is obtained by the scalar difference ∆Ω =

ΩS − ΩP , which is negative for all Galilean satellites.

Thus, in Jupiter’s fluid-stationary frame, the subsatel-

lite point moves retrograde (it is carried to the west by

Jupiter’s spin). For Io, we have ∆Ω = −1.35 × 10−4

rad/s. Jupiter’s rotation splits the ω2±20 frequencies

(Vorontsov & Zharkov 1981), such that ω2−20 = 5.24×
10−4 rad/s and ω220 = 8.73 × 10−4 rad/s. The oscil-

lation frequencies of the Jovian modes closest to tidal

resonance with Io are higher than the frequency of the

tidal disturbance in the fluid-stationary frame, but are

closer to resonance than in the case of the non-rotating

model considered by Vorontsov et al. (1984).

An analogous investigation for tides on Saturn raised

by Tethys and Dione yields results similar to the Jupiter

values: tides from Tethys or Dione are closer to reso-

nance with normal modes for ` = 2 and m = 2 and

m = −2. Since our static value of k2 for Saturn (Wahl

et al. 2016) is robust to various assumptions about in-
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terior structure and agrees well with the value deduced

by Lainey et al. (2016), so far we have no evidence for

dynamical tidal amplification effects in the Saturn sys-

tem.

Unlike the investigation of Lainey et al. (2016), which

relied on analysis of astrometric data for Saturn satel-

lite motions, the Juno gravity investigation will attempt

to directly determine Jupiter’s k2 by analyzing the influ-

ence of Jovian tesseral-harmonic terms on the spacecraft

orbit. A discrepancy between the observed k2 and our

predicted static k2 would indicate the need for a quan-

titative theory of dynamical tides in rapidly rotating

Jovian planets.

6. CONCLUSIONS

Our study has predicted the static tidal Love numbers

knm for Jupiter and its three most influential satellites.

These results have the following features: (a) They are

consistent with the most recent evaluation of Jupiter’s

J2 gravitational coefficient; (b) They are fully consistent

with state of the art interior models (Hubbard & Mil-

itzer 2016) incorporating DFT-MD equations of state,

with a density enhancement across a region of H-He

imiscibility (Morales et al. 2013); (c) We use the non-

perturbative CMS method for the first time to calculate

high-order tesseral harmonic coefficients and Love num-

bers for Jupiter.

The combination of the DFT-MD equation of state

and observed J2n strongly limit the parameter space

of pre-Juno models. Within this limited parameter

space, the calculated knm show minimal dependence

on details of the interior structure. Despite this, our

CMS calculations predict several interesting features of

Jupiter’s tidal response that the Juno gravity science

system should be able to detect. In response to the

rapid rotation of the planet the k2 tidal Love number is

predicted to be much higher than expected for a non-

rotating body. Moreover, the rotation causes state mix-

ing between different tesseral harmonics, leading to a

dependence of higher order static knm on both m and

the orbital distance of the satellite. An additional, sig-

nificant dependence on a/r is expected in the dynamic

tidal response. We present an estimate of the dynamical

correction to our calculations of the static response, but

a full analysis of the dynamic theory of tides has yet to

be performed.
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Table 1. Jupiter Model Parameters

Jupiter

GM 1.26686535 × 108 a (km3/s2)

a 7.1492 × 104 a (km)

J2 × 106 14696.43 a

J4 × 106 −587.14a

qrot .08917920 b

rcore/a 0.15

Iob Europab Ganymedeb

qtid −6.872 × 10−7 −9.169 × 10−8 −6.976 × 10−8

R/a 5.90 9.39 14.98

References— a. Jacobson (2003), b. Archinal et al. (2011)

Table 2. Jupiter Model Values

Smolec. Smetal. Mcore MZ,molec. MZ,metal. Zglobal

(S/kB/Ne) (S/kB/Ne) (ME) (ME) (ME)

DFT-MD 7.24 7.08 7.24 12.5 0.9 10.3 0.07

DFT-MD 7.24 (equal-Z) 7.08 7.24 13.1 1.1 7.5 0.07

DFT-MD 7.20 7.08 7.20 12.3 0.8 9.9 0.07

DFT-MD 7.15 7.08 7.15 12.2 0.7 9.2 0.07

DFT-MD 7.15 (J4) 7.08 7.15 9.7 −0.6 14.9 0.08

DFT-MD 7.13 7.08 7.13 12.2 0.7 8.9 0.07

DFT-MD 7.13 (low-Z) 7.08 7.15 14.0 0.2 1.1 0.05

DFT-MD 7.08 7.08 7.08 12.0 0.6 8.3 0.07

SC 7.15 7.08 7.15 4.8 3.5 28.2 0.11

SC 7.15 (J4) 7.08 7.15 4.3 3.2 29.3 0.12

Model parameters fromHubbard & Militzer (2016). S is the specific entropy for the adiabat
through the inner or outer H-He envelope. M is the mass of heavy elements included in each
layer. Each model matches observed J2 = 14696.43 × 106 (Jacobson 2003), JUP230 orbit
solution, to six significant figures. Models denoted as ’DFT-MD’ if equation of state based on
ab initio simulations or ’SC’ for the Saumon et al. (1995) equation of state, with a number
denoting the entropy below the helium demixing layer. The number of Models denoted with
(J4) also match observed J4 = −596.31 × 10−6. Model denoted (equal-Z) is constrained to
have same metallicity in inner and outer portions of the planet. Preferred interior model shown
in bold face.
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Table 4. Tidal Response for Various Satellites
and Non-rotating Model

Io Ioa Europa Ganymede

non-

rotating

k22 0.58999 0.53725 0.58964 0.58949

k31 0.1941 0.2283 0.1938 0.1937

k33 0.2437 0.2283 0.2435 0.2435

k42 1.787 0.1311 4.357 12.41

k44 0.1387 0.1311 0.1386 0.1386

k51 0.9766 0.0860 2.373 6.7486

k53 0.8446 0.0860 2.0289 5.740

k55 0.0907 0.0860 0.0906 0.0906

k62 6.167 0.0610 37.04 302.1

k64 0.5189 0.0610 1.237 3.487

k66 0.0642 0.0610 0.0641 0.0641

Tidal response of preferred interior model
‘DFT MD 7.13’ with qtid and R/a for three large
satellites, and for a ‘non-rotating’ model with
qrot = 0. In bold face is the same preferred model
as in 3.
aNon-rotating model has identical density structure

to rotating model.


