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We study nonideal mixing effects in the regime of warm dense matter (WDM) by computing the
shock Hugoniot curves of BN, MgO, and MgSiO3. First, we derive these curves from the equations
of state (EOS) of the fully interacting systems, which were obtained using a combination of path
integral Monte Carlo calculations at high temperature and density functional molecular dynamics
simulations at lower temperatures. We then use the ideal mixing approximation at constant pressure
and temperature to rederive these Hugoniot curves from the EOS tables of the individual elements.
We find that the linear mixing approximation works remarkably well at temperatures above ∼2 ×
105 K, where the shock compression ratio exceeds ∼3.2. The shape of the Hugoniot curve of each
compound is well reproduced. Regions of increased shock compression, that emerge because of the
ionization of L and K shell electrons, are well represented and the maximum compression ratio on
the Hugoniot curves is reproduced with high precision. Some deviations are seen near the onset of
the L shell ionization regime, where ionization equilibrium in the fully interacting system cannot be
well reproduced by the ideal mixing approximation. This approximation also breaks down at lower
temperatures, where chemical bonds play an increasingly import role. However, the results imply
that equilibrium properties of binary and ternary mixtures in the regime of WDM can be derived
from the EOS tables of the individual elements. This significantly simplifies the characterization
of binary and ternary mixtures in the WDM and plasma phases, which otherwise requires large
numbers of more computationally expensive first-principles computer simulations.

I. INTRODUCTION

The physical properties of hot, dense plasmas have been studied with experimental and theoretical techniques for
decades [1] because their behavior is important for a number of energy technologies, including inertial confinement
fusion (ICF) [2–7]. On the path to fusion, the sample material typically passes through the regime of warm dense
matter (WDM), which encompasses matter at solid-state densities and elevated temperatures of 104–107 K. This
regime is particularly difficult to describe with theoretical methods because the densities are too high and interac-
tion effects are too strong for typical plasma theory to be applicable [8, 9] or for Saha ionization models to work
properly [10]. On the other hand, the temperatures are too high and the fraction of excited electrons too large for
conventional condensed matter theory to be applicable. The temperature is also not high enough for screening effects
to become the dominant type of interaction and thus Debye plasma models [11] do not work well. All particles are
strongly interacting, which renders the system nonideal. There is no small parameter that would allow for analytical
descriptions to be appropriate. Chemical bonds still play a role, even though they are typically short-lived. The elec-
trons may be highly excited and partially ionized. Pauli exclusion effects are relevant when the ionization equilibrium
is established, which renders the system partially degenerate. A good fraction of the electrons occupy core states
because density is orders of magnitude too low for them to form a rigid neutralizing background. In this regard, a
one-component plasma model would be a poor description of WDM. Despite these challenges, the development of a
rigorous and consistent theoretical framework to describe WDM remains of high importance.

Significant progress has been made with laboratory experiments and first-principles computer simulations. A
number of different simulation methods have been advanced [12]. These simulation methods enable us to compute
the equation of state (EOS) of materials over a wide range of conditions that are also relevant in astrophysics. In
the interiors of giant planets, for example, not only hydrogen-helium mixtures but also rocky materials are exposed
to tens of megabars and ∼104 K [13–22]. Accurate EOSs are needed to characterize their interior structure and
evolution [16, 23]. The discovery of thousands of exoplanets with ground-based observations and space missions as
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well as the unexpected diversity in their masses and radii [24, 25] considerably broadened the range of conditions and
materials of interest [26–28].

In the interior of stars, matter is exposed to a wide range of temperatures∼104−108 K. The most detailed constraints
on the interior conditions come from measurements of normal mode oscillations of our Sun [29–31]. Such astero-
seismological observations are also employed to constrain the interiors of distant stars [32]. The interpretation of
these observations would not be possible without a comparable development of laboratory experiments to probe such
extreme conditions [33], which employ a variety of high-velocity impacts [34, 35], lasers [3, 4, 7, 36–40], and magnetic
compression techniques [41, 42]. The goal of this article is to support these activities by providing theoretical methods
to predict the state of WDM with computer simulations and to derive the EOS of materials over a wide range of
temperature-pressure conditions. This will aid the interpretation of current experiments or help with their design
in the future. Therefore any material and condition, that can be probed with current experimental facilities, is of
potential interest.

The range of pressure-temperature conditions of interest is very large and so is the space of possible chemical
compositions. The challenge of dealing with this huge number of materials and conditions is not unique to the field
of WDM [43]. For binary and ternary mixtures, the number of relevant conditions scales as Nρ × NT × N2

E × Nmix

and Nρ × NT × N3
E × N2

mix where Nρ, NT , NE, and Nmix, respectively, are the numbers of densities, temperatures,
elements, and mixing ratios of interest. The resulting numbers are often so large that an exhaustive coverage is
impractical not only for laboratory experiments but also for computer simulations, although exceptions exist [44]. To
simplify the computation of WDM, we investigate the validity of the linear mixing approximation at high pressures
and temperatures in this article.

The linear mixing approximation is a widely used approach to obtain the equation of state (EOS) of materials from
the individual components if the information about the fully interacting mixture is lacking. The ideal mixing rule is
often used to study gaseous mixtures of simple elements, such hydrogen, helium, carbon and oxygen, to understand
the atmospheres and interior of gas giant planets, where complex mixtures at different concentrations emerge and
whose physical properties are unknown [45–47]. The accuracy of this approach depends largely on the thermodynamic
conditions at which it is applied [48]. A wide variety of systems has been explored under the assumption of ideal
mixing [49–56]. The hypothesis works remarkably well for hydrocarbon mixtures in the warm dense matter regime [57],
water-hydrogen mixtures [58], as well as in hydrogen-helium mixtures enriched in heavier elements [17, 33, 59, 60]. The
range of validity of the linear mixing hypothesis has been explored in great detail for hydrogen-helium mixtures [61].
As an example of a nonlinear mixing effect, Vorberger et al. [62] showed that the presence of helium stabilizes the
hydrogen molecules in the mixture and thus moves their molecular-to-metallic transition to higher pressures.

In this article, we employ two first-principles computer simulation methods, path integral Monte Carlo (PIMC)
calculations and density functional molecular dynamics (DFT-MD) simulations, to study nonideal mixing effects in
the regime of WDM. With this approach, we have been able to produce several EOSs in previous years, which have
supported the laboratory experiments. In particular, our simulation results for warm dense carbon [63] are currently
being used to design NIF targets.

In this article, we will show with our first-principles computer simulations that the compositional dependence of the
EOS is manageable in the regime of WDM. We will demonstrate that the shock Hugoniot curves of various mixtures
can be derived with good accuracy for temperatures above ∼ 2 × 105 K by invoking the ideal mixing approximation
at constant pressure and temperature. This means chemical bonds between species no longer play an important role
at these temperatures. It is still surprising that the properties of hot, dense MgSiO3 can be derived from those of
the pure substances because one essentially assumes, e.g., a Mg ion in a dense MgSiO3 environment behaves very
similarly as one that is surrounded by other Mg ions at the same P -T conditions. Without verification, there is no
guarantee that the degree of ionization will be similar in the two systems. The goal of this article is to investigate
these similarities and to characterize the nonlinear mixing effects quantitatively for the three representative WDM
materials BN, MgO, and MgSiO3.

II. METHODS AND ASSUMPTIONS

We derived the equation of state of every material under consideration, Mg, Si, O, B, N, MgO, MgSiO3, and BN,
by performing series of first-principles computer simulations that employed PIMC simulations at high temperature
and standard Kohn-Sham DFT-MD calculations at low temperature. We describe these methods in the following two
sections.
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FIG. 1. The boundaries of our EOS tables are shown in density-temperature and in pressure-temperature spaces. Various shock
Hugoniot curves are included and in the case of magnesium, we also show the individual EOS points that were computed with
PIMC simulations (circles) for T≥ 2 × 106 K and with DFT-MD (crosses) for lower temperatures. In the lower panel, interiors
conditions of Jupiter [64] and stars of different masses [65] have been added but some lines and symbols from the upper panel
have been omitted for clarity while we marked the maximum pressures in recent experiments with CH [66], B4C [67], MgO [68],
BN [69], and MgSiO3 [70]. The corresponding temperatures were not measured but derived with simulations.
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A. PIMC simulations

Path integral Monte Carlo (PIMC) methods have gained considerable interest as a state-of-the-art, stochastic
first-principles technique to compute the properties of interacting quantum systems at finite temperature. This
formalism results in a highly parallel implementation and an accurate description of the properties of materials at
high temperature where the electrons are excited to a significant degree [63, 69, 71–73]. The application of the PIMC
method to light elements from hydrogen through neon [72] has been possible due to the development of free-particle
nodes [74, 75] while simulations of heavier elements relied on the advancement of Hartree-Fock nodes [76]. The latter
approach enables one to efficiently incorporate localized electronic states into the nodal structure, which extends
the applicability of the path integral formalism to heavier elements and lower temperatures [77, 78]. Furthermore,
PIMC treats all electrons explicitly and avoids the use of pseudopotentials. The PIMC simulation time scales as
1/T , proportional to the length of the paths, which is efficient at high-temperature conditions, where most electrons
including the K shell are excited. Predictions from PIMC simulations at intermediate temperatures have been shown to
be in good agreement with predictions from density functional theory molecular dynamics (DFT-MD) simulations [44,
79].

The fundamental techniques for the PIMC simulations of bosonic systems were developed in Ref. [80] and reviewed
in Ref. [74]. Subsequently the algorithm was extended to fermionic systems by introducing the restricted paths
approach [75, 81, 82]. The first results of this simulation method were reported in the seminal work on liquid 3He [82]
and dense hydrogen [83]. In subsequent articles, this method was applied to study hydrogen [84–89], helium [71, 79, 90],
hydrogen-helium mixtures [48] and one-component plasmas [91–93]. In recent years, the PIMC method was extended
to simulate plasmas of various first-row elements [40, 44, 57, 63, 94, 95] and with the development of Hartree-Fock
nodes, the simulations with heavier nuclei up to silicon became possible [73, 76–78].

The PIMC method is based on the thermal density matrix of a quantum system, ρ̂ = e−βĤ, that is expressed as

a product of higher-temperature matrices by means of the identity e−βĤ = (e−τĤ)M , where M is an integer and
τ ≡ β/M represents the time step of a path integral in imaginary time. The path integral emerges when the operator
ρ̂ is evaluated in real space,

〈R|ρ̂|R′〉 =
1

N !

∑
P

(−1)P
∮
R→PR′

dRt e
−S[Rt]. (1)

The sum includes all permutations, P, of N identical fermions in order project out the antisymmetric states. For
sufficiently small time steps, τ , all many-body correlation effects vanish and the action, S[Rt], can be computed by
solving a series of two-particle problems [80, 96, 97]. The advantage of this approach is that all many-body quantum
correlations are recovered through the integration over paths. The integration also enables one to compute quantum
mechanical expectation values of thermodynamic observables, such as the kinetic and potential energies, pressure, pair
correlation functions and the momentum distribution [74, 98]. Most practical implementations of the path integral
techniques rely on Monte Carlo sampling techniques because the integral has D ×N ×M dimensions in addition to
sum over permutations. (D is the number of spatial dimensions.) The method becomes increasingly efficient at high
temperature because the length of the paths scales like 1/T . In the limit of low temperature, where few electronic
excitations are present, the PIMC method becomes computationally demanding and the Monte Carlo sampling can
become inefficient. Still, the PIMC method avoids any exchange-correlation approximation and the calculation of
single-particle eigenstates, which are embedded in all standard Kohn-Sham DFT calculations.

The only uncontrolled approximation within fermionic PIMC calculations is the use of the fixed-node approximation,
which restricts the paths in order to avoid the well-known fermion sign problem [75, 81, 82]. Addressing this problem
in PIMC is crucial, as it causes large fluctuations in computed averages due to the cancellation of positive and negative
permutations in Eq. (1). We solve the sign problem approximately by restricting the paths to stay within nodes of a
trial density matrix that we obtain from a Slater determinant of single-particle density matrices,

ρT (R,R′;β) =
∣∣∣∣∣∣ρ[1](ri, r′j ;β)

∣∣∣∣∣∣
ij
, (2)

that combined free and bound electronic states [76, 78],

ρ[1](r, r′;β) =
∑
k

e−βEk Ψk(r) Ψ∗k(r′) (3)

+

N∑
I=1

n∑
s=0

e−βEsΨs(r −RI)Ψ∗s(r′ −RI) . . (4)
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The first sum includes all plane waves, Ψk while the second represents n bound states Ψs with energy Es that are
localized around all atoms I. Predictions from various slightly differing forms of this approach have been compared
in Ref. [77]

The PIMC simulations were performed with the CUPID code [86] using periodic boundary conditions. For pure O,
Mg, Si, and N systems, we considered simulation cells with 8 nuclei and 64, 96, 112, and 56 electrons, respectively.
For the simulations of boron, slightly larger cells with 30 nuclei and 150 electrons are used. For MgO, we considered
80 electrons, 4 Mg, and 4 O nuclei. For BN, we considered 144 electrons, 12 B, and 12 N nuclei while our MgSiO3

simulations consisted of 3 Mg, 3 Si, and 9 oxygen nuclei as well as 144 electrons. Finite size effect were discussed
when we first reported these EOS calculations. A detailed finite-size study is provided in the supplementary material
of Ref. [72] that showed that finite size effects are relatively small because the most important changes in the energy
and pressure are caused by the ionization of various electronic states. While the ionization equilibrium depends on
the thermodynamic conditions of the plasma, it does not require large simulation cells to capture these effects.

We enforced the nodal constraint in small steps of imaginary time of τ = 1/8192 Ha−1, while the pair density
matrices [99] were evaluated in steps of 1/1024 Ha−1. This results in using between 2560 and 5 time slices for the
temperature range that was studied with PIMC simulations. These choices converged the internal energy per atom to
better than 1%. We have shown the associated error is small for relevant systems at sufficiently high temperatures [100].

B. DFT-MD simulations

Kohn-Sham DFT [101, 102] is a first-principles simulation method that determines the ground state of quantum
systems with high efficiency and reasonable accuracy, which has gained considerable use in computational materials
science. The introduction of the Mermin scheme [103] enabled the inclusion of excited electronic states, which extended
the applicability range of the DFT method to higher temperatures. The combination of this method with molecular
dynamics has been widely applied to compute the EOS of condensed matter, warm dense matter (WDM), and some
dense plasmas [40, 104–106]. Unless the number of partially occupied orbitals is impractically large, DFT is typically
the most suitable computational method to derive the EOS because it accounts for electronic shell and bonding effects.
The main source of uncertainty in DFT is the use of an approximate exchange-correlation (XC) functional. The errors
resulting from the XC functional often cancel between different thermodynamic conditions. Furthermore this error
may only be a small fraction of the internal energy, which besides pressure is the most relevant quantity for the EOS
and the derivation of the shock Hugoniot curve [107]. However, the range of validity of this assumption in the WDM
regime remains to be verified for different classes of materials through the comparison with laboratory experiments
and other computational technique like PIMC simulations.

With the VASP code [108], we performed simulations from 104 up to 2 million Kelvin. We employed a Nosé
thermostat [109] to keep the temperature constant. As illustrated in Fig. 1, we explored densities from 6.89–51.67
g cm−3 for Mg, 1–100 g cm−3 for O, 2.3–18.6 g cm−3 for Si, 0.35–71 g cm−3 for MgO, and 0.321–64.2 g cm−3 for
MgSiO3. We used cubic simulation cells with periodic boundary conditions and, to improve efficiency, we used a
smaller number of atoms at the highest temperatures. As shown in our previous work [57, 78, 110, 111], this is
not detrimental to the accuracy of the EOS data at high temperatures. More details of the simulations for BN,
B, and N can be found in our previous publications [40, 69, 94]. We employed projector augmented wave (PAW)
[112] pseudopotentials with a 1s2 frozen core for all elements, and mostly used the Perdew-Burke-Ernzerhof (PBE)
functional [113] at the majority of conditions to describe the exchange-correlation effects. For some materials and a
small number of conditions, we had to switch to the local density approximation (see details in Ref. [111, 114]), but
have very good agreement between the obtained results when we switched functionals. The time step was adapted
according to the corresponding temperature, and a large energy cut-off was used for the plane wave basis set.

C. Shock Hugoniot Curves

The shock Hugoniot curves of many materials have been measured up to megabar, and in some cases gigabar,
pressures [104, 115–117]. Even at extreme conditions [44, 69, 105, 106, 111, 118], predictions from first-principles
simulations and experiments have been shown to be in good agreement.

The EOS can be used to predict the thermodynamic conditions that are reached when a material is subjected to
dynamical shock compression. Assuming the materials reached thermodynamic equilibrium during the experiments,
the measured shock and particle velocities can be converted into pressure, density, and energy through the Rankine-
Hugoniot equations [119–121]. The energy conservation equation,

(E − E0) +
1

2
(P + P0)(V − V0) = 0, (5)
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is particularly convenient to derive the shock Hugoniot curve with theoretical methods. Here, E0, V0, and P0 represent
the initial conditions of energy, volume, and pressure, respectively. E, V , and P are the final conditions after the
material behind the shock front has reached a equilibrium state. We solve the Eq. 5 for T and V by interpolating
E(V, T ) and P (V, T ) in our EOS tables. Most simply, one solves for V at given T because there is only one solution.

D. Linear Mixing

The linear mixing approximation at constant pressure and temperature is the most common form in astrophysics [65]
but it is often used also in plasma physics [122]. Still, variations and alternate mixing rules have been invoked [123]. In
Ref. [59], the linear mixing approximation was employed to perturb the helium fraction in an interacting H-He EOS.
When mixture of carbon, oxygen, and neon nuclei are studied under conditions in White Dwarf interiors, one would
want to mix the individual EOSs at constant temperature and nuclear charge density for the following reason. The
density in White Dwarfs is sufficiently high for the electrons to decouple from the motion of the nuclei and to form
a rigid neutralizing background. That background, however, provide the dominant contribution to the pressure and
that is a function of the electron density, which is equal to the nuclear charge density. Therefore mixing at constant
P translates into mixing at constant nuclear charge.

Plasmas have also been studied with two-temperatures models [122] that treat nuclei and electrons as two inde-
pendent thermodynamic ensembles with differing temperatures because the inter-species thermalization is delayed
by the difference in mass. A number of other approaches to study mixtures [123–127] have been proposed with the
goal of facilitating large scale hydrodynamic simulations. Some of these approaches have been verified by orbital-free
molecular dynamics [128].

In this article, however, we use the simplest form of the linear mixing approximation. For a mixture of species A
and B, one neglects all inter-species interactions and, for given P and T , one assumes the volume of the mixture is
given by Vmix(P, T ) = VA(P, T ) + VB(P, T ). The mass density, ρmix, is given,

1

ρmix
=
xA
ρA

+
xB
ρB

, (6)

where xA and xB are the mass fractions of each species in the mixture. The internal energy is then given by

Emix = xAEA + xBEB , (7)

where all three energy terms are normalized per unit mass. When theoretical and computational results are employed,
it is often more convenient to normalize all quantities by formula unit (FU). Let us assume that V1(P, T ) and V2(P, T )
are the volumes per formula unit of species 1 and 2. N1 and N2 specify how many formula units of species 1 and 2
are contained in one unit of the mixture. For given P and T , the volume, mass, and internal energy of one mixture
unit are obtained from,

Vmix = N1V1 +N2V2 , (8)

mmix = N1m1 +N2m2 , (9)

Emix = N1E1 +N2E2 . (10)

The mass density of the mixture is given by ρmix = mmix/Vmix.
The linear mixing approximation only provides reasonable results for the mixture at elevated temperatures where

chemical bonds do not affect the EOS significantly. For this reason, we always use the E0, P0, and V0 of the fully
interacting system when we solve Hugoniot equation 5. E and V , however, can be approximated by Emix and Vmix.
To solve Eq. 5 for a mixture, we assume a temperature and a value for Vmix. Then we determine the pressure that
matches Vmix and we derive the corresponding Emix. We iterate over Vmix to find a solution of Eq. 5.

III. RESULTS AND DISCUSSION

In Figs. 2, 3, and 4, we compare the shock Hugoniot curves that were computed with the fully interacting inter-
nal energy and pressure for BN [69], MgO [111], and MgSiO3 [118, 130] with those derived from the linear mixing
approximation using the elemental EOS tables. The agreement between the pairs of curves is remarkably good in
pressure-density and temperature-density spaces. For temperatures above ∼2×105 K corresponding to shock compres-
sion ratios above ∼3.2, the shape of the Hugoniot curve is very well reproduced by the linear mixing approximation.
This includes the regimes of K and L shell ionization. The compression maximum is also well reproduced. Linear
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mixtures of three elements show the same level of agreement with the fully interacting Hugoniot curves as linear
mixtures of two elements. We do see some deviations for MgSiO3 at 2 × 106 where the Hugoniot curves transition
between the K and L shell ionization regimes. Under these conditions, the linear mixing approximation does not
accurately capture the ionization equilibrium of the interacting system.

For comparison, we also show the Hugoniot curves for the individual elements in Figs. 2, 3, and 4. The differences
in the Hugoniots for the individual elements and that of the compounds are primarily due to differences in the initial
densities. In Fig. 2, we also show the results from laser shock experiments [69] that reached up to a pressure of 2643 GPa
and a compression ratio of 2.66. This is not sufficiently high for the linear mixing approximation to work well. While
in pressure-compression space, the linear mixing and the fully interacting Hugoniot curves both agree the experimental
data but the temperature-compression graph of Fig. 2 reveals that the shock temperatures are underestimated for
compression ratios below 3.2 if the linear mixing approximation is invoked. We see the same trend in Fig. 3 where we
compare our theoretical predictions for MgO with the experimental results from Ref. [68] that reached up pressures of
2303 GPa and compression ratios of 2.68. While in pressure-compression space, the predictions from the linear mixing
approximations appear to be reasonable, the shock temperature is underestimated for compression ratios smaller
than 3.2. Finally in Fig. 4, we compare with the shock experiments in Ref. [70] that reached up to 1426 GPa and
compression ratio of 2.26. While these results are in good agreement with fully interacting DFT-MD simulations [70],
the shock temperatures are underestimated if the linear mixing approximation is employed. The reason for this
discrepancy is that, for given pressure and temperature, the linear mixing approximation underestimates the density
and the internal energy for T / 2× 105K, as we confirm in the following analysis.

The shock Hugoniot curves can only be reproduced well by the linear mixing approximation as long as the volume
and internal energy, that enter into Eq. 5, are reasonably accurate. In Fig. 5, we plot the deviation in ρmix and the
interacting ρ for two temperatures as a function of density. The error in density is less than 1% for all three materials
with the exception of a B+N mixture, in which case the error reaches 2% at low and high densities.

In Fig. 6, we plot the linear mixing error in the internal energy that we normalized by dividing by nuclear kinetic
energy 3

2NkBT . The deviations are 0.1 or less for all three materials and conditions under consideration.
In Fig. 7, we plot the linear mixing errors as a function of temperature for three relevant density set equal to 4.5

times the initial shock density, ρ0. The deviations in density are 2% or less except at 1.5 ×106 K where we switch
between PIMC and DFT-MD EOS computations, in which case the deviations reaches 4%. This, however, does not
reflect any insufficiency in the linear mixing approximation but the underlying EOS tables are imperfect. When we
study the linear mixing error in the internal energy, we also find a discrepancy for MgSiO3 at 1.5 ×106 K.

For temperature below 2 × 105 K, the errors in density and internal energy of the linear mixing approximation
increase with decreasing temperature because chemical bonds and interactions between different species play an
increasingly important role. Chemical bonds lower the internal energy and pressure. Since bonding effects are
absent from the linear mixing approximation, it overestimates the internal energy and density for given pressure and
temperature, which explains the trends at lower temperature in Fig. 7. Still, already for T ' 2 × 105 K, the linear
mixing approximation works well.

TABLE I. For the materials and initial conditions in the first two columns, the three following column pairs tabulate what
changes in pressure or internal energy are needed to a) shift the maximum compression ratio on the Hugoniot curve by −0.1
or shift the ρ/ρ0 = 3.5 point b) by 5% up in temperature and c) by 5% up in pressure.

Material ρ0 (g cm−3) δPmax
P

δEmax
3
2
NkbT

δP1
P

δE1
3
2
NkbT

δP2
P

δE2
3
2
NkbT

BN 2.26 0.030 −0.206 0.011 −0.039 0.009 −0.041
MgO 3.570 0.029 −0.336 0.018 −0.085 0.015 −0.097

MgSiO3 3.208 0.029 −0.324 0.019 −0.085 0.015 −0.095

Finally, we performed three tests how much of a change in pressure and in internal energy is needed to shift the
Hugoniot curve in temperature-compression and pressure-compression spaces. First, we determined what fractional
change in pressure is needed to reduce the maximum compression ratio on the three principal Hugoniot curves by 10%.
The results of our calculations in Tab. I show that a 3% increase in pressure would trigger such a shift. Alternatively,
such a reduction in compression ratio can be introduced by lowering the internal energy by 0.21. . .0.34 × 3

2NkbT . The
magnitude of both corrections is much larger than the linear mixing error that we reported in Figs. 5, 6, and 7, which
explains why we were able to reproduce the compression maxima of the Hugoniot curves very well with the linear
mixing approximation.

In Tab. I, we report the results from two more tests at lower temperatures and pressures. Starting the point at
3.5-fold compression on the Hugoniot curve, we asked what fractional pressure change and what energy correction in
units of 3

2NkbT would be needed to move ρ/ρ0 = 3.5 point up in temperature by 5% or up in pressure by 5%. The
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required pressure and energy corrections are reported in columns 5-8 of Tab. I. Energy changes between −0.097 to
−0.039× 3

2NkbT are needed to change the temperature and pressure on the Hugoniot curve by 5%. These changes are
comparable in magnitude to the linear mixing errors we have reported in Figs. 6 and 7. So, at 3.5-fold compression,
the accuracy of the linear mixing approximation is about 5%.

In Tab. I, we also show that fraction pressure changes between 0.009 and 0.019 are needed to move ρ/ρ0 = 3.5 point
by 5% in pressure and temperature. These values are larger than the linear mixing errors in density at 5×105 K that
we show in Fig. 5 that amount to less than 1% at this temperature. This suggest that the changes in the internal
energy are slightly more difficult to reproduce with the linear mixing approximation than the pressure.

IV. CONCLUSION

We have validated the linear mixing approximation across a wide range of temperature and pressure conditions
for MgO, MgSiO3, and BN plasmas. Under this approximation, accurate shock Hugoniot curves can be obtained for
temperatures of T ' 2 × 105 K and compression ratios of ρ/ρ0 ' 3.2, correctly predicting the maximal compression
ratio and the K- and L-shell ionization regimes. This will greatly simplify the computations for the regime of WDM
and may even help reduce the number of experiments. This conclusion is further supported by the first-principles
calculations for CH [57] that reported that the maximal compression ratio on the Hugoniot curve can be derived with
an accuracy of 1% being combining the EOSs of elemental carbon and hydrogen. Similarly, we are able to reproduce
the maximum compression ratio of B4C [67] with an accuracy of 0.4% if we mix the EOS of boron and carbon.
Ref. [58] determine the hydrogen and water form an ideal mixture under conditions of ice giant envelopes. On the
other hand, mixtures of hydrogen, helium and heavier elements in giant planet envelopes could only be accurately
represented as a linear mixture after the volumes of the heavier species had been adjusted to match the results from
fully interacting DFT-MD simulations [17]. The validity of the linear mixing approximation depends on the pressure
and temperature conditions. Magyar and Mattsson showed that errors of 10% can be expected for xenon-deuterium
mixtures at megabar pressures and 10 000 K [123] while we have shown here that at much higher temperature, the
linear mixing approximation works very well. Still, in this article we only investigate how well the volume of and
internal energies can be derive by combining the EOSs of the various elements at constant pressure and temperature.
Future work should thus be directed on understanding to which degree transport properties of WDM are affected by
nonlinear mixing effects.
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FIG. 2. The shock Hugoniot curves of boron nitride for ρ0=2.26 and 3.45 g cm−3 derived from a fully interacting EOS table [69]
and by assuming an ideal mixture of boron [40] and nitrogen [94]. For temperature above 2 × 105 K, the BN Hugoniot curve
is remarkably well reproduced by an ideal B+N mixture. Both curves are in good agreement with the experimental data from
Ref. [69]. For comparison, the shock Hugoniot curves of the elemental substances are also shown. In the lower panel, both
bracket the Hugoniot curve of BN for the highest temperature, as is predicted by the Debye plasma model [11].
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FIG. 3. The shock Hugoniot curve of magnesium oxide for ρ0=3.570 g/cm3 derived from a fully interacting EOS table [111]
as well as by assuming an ideal mixture of magnesium [129] and oxygen [110]. For comparison, the experimental results from
Ref. [68] and the shock Hugoniot curves of the elemental substances are also shown.
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as well as by assuming an ideal mixture of Mg [129], Si [76], and O [110]. For comparison, we included the experimental data
from Ref. [70] as well the shock Hugoniot curves of the three elemental substances.
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function of density for the same conditions as in Fig. 5.
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FIG. 7. Errors in the linear mixing approximations are plotted as function of temperature at constant density values that were
chosen to be 4.5 times the initial shock density in order to represent conditions near the maximum shock compression. For BN,
MgO, and MgSiO3 the densities were respectively 10.161, 16.064, and 14.436 g cm−3. The top panel shows relative error in
the predicted density. In the middle panel, we show the internal energy per atom on a logarithmic scale after subtracting E0.
In the lower panel, we show energy error in the linear mixing approximation that we normalized by the ideal kinetic energy,
3
2
NkBT .
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