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As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but
knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral
Monte Carlo (PIMC) results for partially-ionized states1 at high temperatures and density functional theory
molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of
state for sodium over a wide density-temperature range of 1.93 − 11.60 g/cm3 and 103 − 1.29 × 108 K. We
find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that are
consistent with DFT-MD at intermediate temperatures near 106 K. Since PIMC and DFT-MD provide a
first-principles treatment electron shell and excitation effects, we are able identify two compression maxima
in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a
benchmark for widely-used EOS models, SESAME, LEOS, and Purgatorio. Due to the low ambient density,
sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 107K,
We show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing
relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear
relation. We also compute the density-temperature dependence of thermal and pressure ionization processes.

I. INTRODUCTION

The behavior of sodium and other alkali metals at ex-
treme conditions has generated intense scientific inter-
est over many decades as experimental and theoretical
technology has evolved to facilitate studies of increas-
ingly atypical states. At ambient conditions, sodium
has long been known as a prototypical, simple, free-
electron metal2 with a high-symmetry, bulk-centered
cubic (bcc) structure. Recent interest in sodium has
been driven by the the ability to carefully probe exotic
high-pressure states3, made possible by improvements
in static-compression4,5 and single-crystal experimental
techniques6. A number of experimental and theoreti-
cal works have revealed that sodium exhibits anoma-
lous structural6–12, electronic and optical10,13–22, and
melting17,23–28 behavior at high pressure. Among the
structural studies, high-pressure x-ray diffraction exper-
iments have explored sodium up to pressures and tem-
peratures of 150 GPa and 1000 K, observing a complex
series of phase transitions6,9,11 from the bcc phase to at
least seven lower-symmetry phases. Sodium also displays
an anomolous melting curve maximum23 in this pres-
sure range as the liquid undergoes structural electronic
changes, becoming more dense than the solid over a large
pressure range of ∼60 GPa. At even higher pressures,
beyond 200 GPa, sodium undergoes a metal-insulator
transition13 by forming an electride21. Ab initio random

a)Electronic mail: shuai.zhang01@berkeley.edu
b)Electronic mail: militzer@berkeley.edu

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Shock Compression ratio ρ/ρ0

101

102

103

104

105

106

PIMC and DFT-MD
(this work)

SESAME

LEOS

LYNX, Purgatorio

EAM model
[Belashchenko, 2013]

PIMC and DFT-MD
(this work with radiation effect)

LPT [Young and Ross, 1984]

Expt. [Rice, 1965]

Expt. [Bakanova, 1965]

Expt. [LASL]

P
re

ss
u
re

 (
G

P
a
)

FIG. 1. Principal Hugoniot of Na obtained in this work in
comparison with that considering the photon radiation correc-
tion and those from SESAME, LEOS, and Purgatorio (Lynx)
models.

structure searches predict that sodium will ultimately be-
come a reentrant metal at a pressure of 15.5 TPa at 0
K29.

Analogous to the impact that improved static-
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compression technology has had for alkali metals in
the condensed matter regime, we can expect future dy-
namic compression research to routinely probe the giga-
bar (Gbar)30,31 pressures and provide new data on the
behavior of warm dense matter (WDM). Shock mea-
surements of hot, dense alkali metals are expected to
be an important component of solving problems in as-
trophysics, planetary physics, stockpile stewardship, and
inertial fusion. Thus far, only relatively low pressure
(P < 228 GPa32, T < 8168 K) shock experiments have
been performed on sodium. Early dynamic compression
experiments were motivated by compressibility of metals
and the simplicity of ambient sodium as a material for the
study of fundamental shock physics behavior33–35. More
recent shock experiments have been motivated by the
prospect of observing the metal-insulator transition32.

Complementary to the shock experiments, there have
been a number of theoretical works aiming at calculating
the equation of state (EOS) and shock Hugoniot curve us-
ing either analytic approaches36,37 or semi-classical free-
energy models38–40, fluid-variational theory41, local pseu-
dopotential theory42, or EAM potentials43–45. While
each of these methods agrees reasonably well with the
available low-pressure shock Hugoniot data (P < 100
GPa), none possess the rigor that is necessary to treat
the strong coupling, quantum degeneracy, and ionization
physics associated with hot, dense plasma regimes, that
Gbar-shock experiments will access.

Development of rigorous, first-principles frameworks,
such as path integral Monte Carlo (PIMC)1,46,47 or
density functional theory molecular dynamics (DFT-
MD)48–51, for computing the EOS and behavior of ma-
terials in extreme pressure and temperature conditions
is needed as Gbar-range shock experiments are emerg-
ing and data need to be interpreted. Recently, we
have been developing PIMC for simulating heavier el-
ements1,47,48,52–58, which is efficient at high tempera-
tures, and can be used to complement DFT-MD calcu-
lations that are efficient at comparatively low tempera-
tures. Combined data from PIMC and DFT-MD provide
a coherent EOS over a wide density-temperature range
that spans the condensed matter, WDM, and plasma
regimes. In the current work, we use PIMC and DFT-
MD to compute the EOS, shock compression behav-
ior, and plasma structure evolution of sodium across a
much larger density-temperature range than has ever
been studied in experiments or in theory. We provide
our EOS table and shock Hugoniot curve as a theo-
retical benchmark in comparison with widely-used EOS
database models and experiments.

The paper is organized as follows: Section II discusses
details of our PIMC and DFT-MD simulation methods.
In Sec. III, we discuss several results: (1) comparison of
the performance of different choices for PIMC nodal sur-
faces, (2) the internal energies and pressures, (3) shock
Hugoniot curves, and (4) the density-temperature evo-
lution of ionization processes. Finally, in Sec. IV, we
conclude.

II. SIMULATION METHODS

A reliable theoretical scheme for simulating materials
across a wide range of density and temperature condi-
tions naturally involves treating physics appropriately
in different regimes. In the limit of high temperature
(above 108 K), materials tend to behave as weakly-
interacting plasmas because of strong thermal ionization.
Under such conditions, the ideal Fermi gas model and the
Debye-Hückel theory59 are good approximations. At low
to intermediate temperatures (T < 106 K), standard,
orbital-based, Kohn-Sham DFT-MD is a suitable option
to derive the EOS because it fully accounts the bonding
effects and bound states within certain approximations of
the exchange-correlation functional. However, the need
to explicitly compute all partially occupied electronic or-
bitals causes DFT-MD to become computationally in-
tractable beyond temperatures of roughly 106 K. Recent
work on orbital-free DFT48,50,60,61 and extended DFT-
MD with free electron approximation for high energies51

have made progress toward overcoming this difficulty, but
their general applicability and accuracy needs to be fur-
ther examined.

PIMC simulates all quantum, many-body exchange
and correlations effects and provides the most natural
formulation to compute accurate EOSs at high tempera-
tures (T > 106 K). In PIMC, the thermal density matrix
is expressed as Feynman path integral62, which treats
electrons and nuclei as quantum paths that are cyclic
in the imaginary time 0 ≤ t ≤ β = 1/kBT , where
kB is the Boltzmann constant. Therefore, PIMC be-
comes increasingly efficient at higher temperatures as
paths become shorter and more classical in nature. How-
ever, application of PIMC to study real materials other
than hydrogen46,52,63–69, helium53,70, hydrogen-helium
mixtures71, and one-component plasmas72,73, is difficult
because of the complex fermion sign problem, nonlocal
pseudopotentials, and complex nodal structures74.

The sign problem in fermionic PIMC simulations is
usually addressed with the fixed-node approximation74

that restricts paths to positive regions of a trial density
matrix, ρT (R,Rt; t) > 0. The restricted path integral
reads,

ρF (R,R′;β) =
1

N !

∑
P

(−1)P
∫
R→PR′, ρT>0

dRt e
−S[Rt],

(1)
where P denotes permutations of identical particles, and
S is the action that weights the paths. The most com-
mon approximation to the trial density matrix is a Slater
determinant of single-particle density matrices,

ρT (R,R′;β) =
∣∣∣∣∣∣ρ[1](r i, r ′j ;β)

∣∣∣∣∣∣
ij
, (2)

in combination with the free-particle (FP) density ma-
trix,

ρ
[1]
0 (r , r ′;β) =

∑
k

e−βEk Ψk (r)Ψ∗k (r ′), (3)
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which represents a sum over all plane waves Ψk (r) with
energy Ek .

PIMC with FP nodes gives exact results in the limit of
high temperature53. Developments of this method have
allowed for remarkable progress. Using FP nodes, we
have successfully obtained the EOS of several heavy ele-
ments (C47, N57, O56, Ne55) and compounds (H2O47).
The combined results of PIMC and DFT-MD have
bridged the WDM gap between DFT-MD and the high
temperature limit and provided consistent sets of coher-
ent EOS from first principles.

Several attempts have been made to go beyond FP
nodes in PIMC simulations66,75. In recent work1, we
show that the applicability range of PIMC simulations
can extend to lower temperatures when a number of ns
atomic orbitals at each ion I are added to the FP nodes,

ρ[1](r , r ′, β) = ρ
[1]
0 (r , r ′;β)+

N∑
I=1

ns∑
s=0

e−βEsΨs(r −RI)Ψ
∗
s(r
′ −RI) .

(4)

Our results for a single silicon atom in periodic bound-
ary condition showed that nodes derived from Hartree-
Fock (HF) orbitals yield highly accurate predictions for
the pressure and the internal energy at much lower tem-
perature than is accessible with FP nodes. The com-
bined results using this PIMC method and DFT-MD pro-
vided a coherent EOS for dense silicon plasmas over a
wide density-temperature grid (2.3-18.6 g cm−3, 5× 105-
1.3 × 108 K). In this work, we will also investigate the
effects of various nodal surfaces in PIMC calculations and
show that the localized, Hartree-Fock orbitals yield ac-
curate pressures and internal energies for sodium.

Our PIMC simulations are performed within the fixed
node approximation74 and based on the CUPID code76.
Similar to the PIMC simulations of Si1 and recently of
Na at one density58, we treat the nuclei classically be-
cause of the high temperatures considered here. Elec-
tronic Coulomb interactions are introduced via pair den-
sity matrices77.

DFT-MD simulations use the Vienna ab initio sim-
ulation package (VASP)78 and implement exchange-
correlation functionals within the local density approxi-
mation (LDA)79,80. We use a projected augmented wave
(PAW) pseudopotential81 with a frozen, 1s2 core elec-
trons and a small core radius of 1.45 Bohr. We use a
plane wave basis with 4000 eV cutoff, Γ-point for sam-
pling the Brillouin zone, and a time step of 0.2 fs. The
typical length of the MD simulations exceeds 0.4 ps. In
order to put the PAW-LDA pseudopotential energies on
the same scale as all-electron calculations, we shifted all
of our VASP DFT-MD energies by -161.3386 Ha/atom.
This shift was determined by performing isolated, all-
electron atomic calculations with the OPIUM code82 and
corresponding isolated-atom calculations in VASP.

Most of our simulations are based on a cell with 8
atoms. At low temperatures, where DFT-MD simula-
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FIG. 2. Nine isochores (corresponding to 2-12 ρambient) in a
temperature-pressure plot, along with the interior profiles of
the Sun83 and a star at the end of its helium burning84. The
P −T conditions of our PIMC and DFT-MD simulations and
two Hugoniot curves with initial densities ρ0 of 1.0 and 2.0
times the ambient density are also shown.

tions are computationally affordable, we use a larger, 54-
atom cell. We simulate data along nine isochores cor-
responding to 2-, 3-, 4-, 5-, 6-, 7-, 8-, 10-, and 12-fold
compression of ambient density ρambient=0.96663 g cm−3.
For each density, we study the temperature range from
103 to 1.29×108 K, relevant to the regime of WDM and
stellar interiors (Figs. 1-2).

III. RESULTS

A. Comparison of PIMC methods

We investigate whether any further improvement can
be made by representing the orbitals with more accu-
rate basis sets, including a large number of localized or-
bitals or by deriving the orbitals with LDA or generalized
gradient approximation in the Perdew-Burke-Ernzerhof
(PBE) type85, instead of HF. Before performing many-
atom simulations, we tested various methods of introduc-
ing atomic orbitals on one sodium in a periodic 5-Bohr
cubic box, and compared the results in Fig. 3 and Table
I.

Figure 3 shows the difference in internal energy and
pressure between PIMC and DFT-MD calculations. At
temperatures of T ≥ 2 × 106 K, all PIMC energies and
pressures are systematically higher than our DFT-MD
results within LDA or PBE. This can be attributed to the
excitations of 1s electrons, which are treated explicitly as
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single Na atom in a periodic 5-Bohr cubic cell calculated us-
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approximation (LDA). Dark solid lines represent DFT results
obtained with the Perdew-Burke-Ernzerhof functional. Col-
ored dashed lines represent PIMC results with free-particle
and Hartree-Fock nodes.

the other outer-shell electrons in PIMC, but are frozen
in the pseudopotential of DFT-MD calculations.

At temperatures of T ≤ 2 × 106 K, the energies from
PIMC computations with FP nodes are systematically
too high, while the pressures remain quite reasonable.
In contrast, using PIMC with HF nodes, the results are
in much better agreement with PBE predictions. This
suggests that FP nodes do not lead to the correct K
and L shell structures of the atom, which is primarily a
local property, so the error in the energy does not depend
significantly on density.

Table I lists additional PIMC results for two tempera-
tures of 1 and 2 million Kelvin. In all cases, the orbitals
were derived with spin-restricted GAMESS86 calculations
of the Na+ ion so that we can use the same orbitals for
both spin channels in PIMC calculations. This is a rea-
sonable approximation because the spin state is of minor
importance at high temperature. This is confirmed by
DFT-MD calculations: within LDA and PBE, the spin-
polarized (5+6) and spin-unpolarized calculations yield
similar results for the temperature range under consider-
ation.

In our PIMC calculations with localized nodal surfaces,
we need a minimum of 6 atomic orbitals to provide at
least one bound state for every electron. Table I shows

TABLE I. Comparison of energies and pressures calculated
using different methods. For the PIMC calculations, we also
specify the node type, the basis of localized orbitals and their
numbers ns. The internal energies are in units of Ha/atom,
pressures are in GPa.

Method Basis ns E σE E-ELDA P σP P -PLDA

T=2020958 K
LDA -60.61 11354.6
PBE -61.32 -0.71 11349.6 -4.9
PIMC-FP 0 -58.67 0.46 1.93 11356.4 68.1 1.8
PIMC-HF 6-31G 6 -59.06 0.37 1.55 11357.7 56.0 3.1
PIMC-HF 6-31G 13 -59.45 0.19 1.16 11313.6 29.7 -41.0
PIMC-HF 6-31+G 13 -59.15 0.27 1.46 11362.1 42.6 7.5
PIMC-HF 6-31+G 17 -59.13 0.31 1.48 11360.8 49.3 6.2
PIMC-LDA 6-31G 13 -59.77 0.43 0.83 11283.4 66.3 -71.2
PIMC-PBE 6-31G 13 -59.28 0.34 1.32 11340.0 53.0 -14.6
PIMC-PBEX 6-31G 13 -58.92 0.39 1.69 11405.4 59.9 50.8

T=1010479 K
LDA -112.87 0.00 0.00 4528.0 0.0 0.0
PBE -113.54 0.00 -0.67 4531.8 0.0 3.8
PIMC-FP 0 -111.14 0.80 1.73 4474.0 125.2 -54.0
PIMC-HF 6-31G 6 -113.12 0.33 -0.24 4544.7 51.5 16.7
PIMC-HF 6-31G 13 -113.44 0.29 -0.57 4508.9 45.8 -19.1
PIMC-HF 6-31+G 13 -113.47 0.23 -0.60 4508.2 37.0 -19.8
PIMC-HF 6-31+G 17 -112.73 0.31 0.15 4627.1 49.9 99.1
PIMC-LDA 6-31G 13 -113.53 0.36 -0.65 4473.6 55.7 -54.4
PIMC-PBE 6-31G 13 -113.67 0.32 -0.80 4466.6 52.6 -61.4
PIMC-PBEX 6-31G 13 -113.38 0.32 -0.51 4507.5 50.8 -20.5

that we found no statistically significant difference be-
tween using 6 and 13 HF orbitals in PIMC calculations,
for both temperatures. At 1010479 K, the PIMC pres-
sure and energy become too high when we increase the
number of orbitals to 17. We attribute this deviation to
our small simulation cell of 5.0 Bohr. The highest atomic
orbitals are too delocalized to fit into this cell.

We find no statistically significant differences in the
PIMC results between using a 6-31G and a slightly more
accurate 6-31+G basis set. Both yield similar HF ener-
gies that are 0.176 Ha higher than basis set-converged HF
calculations with a TZV basis. This difference is within
the error bar of typical PIMC calculations.

We also test whether there would be an advantage in
deriving the atomic orbitals with LDA or PBE methods
rather than with HF theory, and find no significant dif-
ference. Furthermore, our studies with orbitals that are
derived with just PBE exchange (PBEX) lead to similar
PIMC results.

In the following many-atom PIMC calculations, we
choose 13 HF orbitals that are generated with 6-31G ba-
sis in Eq. 4.

B. Equation of state

Figure 4 shows the calculated internal energies and
pressures along nine isochores relative to the ideal Fermi
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FIG. 4. Excess internal energies and pressures, relative to
the ideal Fermi gas, for a 8-atom simulations along nine iso-
chores (2, · · · , 12-fold compression of ambient density). Cor-
responding results of the Debye-Hückel theory are plotted for
comparison. For clarity, each energy curve at three-times-
ambient or higher density is shifted by -7, and the pressure
curve is shifted by -0.2, with respect to the nearby one with
lower density. PIMC and DFT-MD predict consistent results
at T=2×106 K, and PIMC agrees analytical models above
2×107 K.

electron gas model87. Our results show excellent agree-
ment between PIMC and DFT-MD at 2×106 K for
all densities. The difference between PIMC and DFT-
MD is typically less than 3 Ha/atom in internal energy
and within 3% in pressure. We have thus succeeded
in constructing a coherent first-principles EOS table for
warm dense sodium, over a wide range of densities (2-12
ρambient) and temperatures (103-1.29× 108 K).

At high temperatures of T > 2 × 107 K, our PIMC
results agree with those from the Debye-Hückel model as
well as the Fermi electron gas theory, because the tem-
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FIG. 5. Comparison of the nuclear pair correlation function
obtained from DFT-MD and PIMC for 8-atom simulation
cells at 106 K and under 8-fold compression.

peratures are so high that the atoms are fully ionized.
PIMC successfully bridges DFT-MD at 2×106 K and

analytical models in the high-temperature limit. This
cross-validates the EOS data from present PIMC simu-
lations with fixed-node approximation, and the use of a
frozen core and a zero-temperature exchange-correlation
functional in DFT-MD up to 2× 106 K.

As temperature decreases, the ideal Fermi electron
gas model significantly overestimates the energy and the
pressure because it neglects all interactions. This is par-
tially improved in the Debye-Hückel model, which treats
weak interactions correctly within the screening approx-
imation. However, because the Debye-Hückel model still
does not treat bound states, it leads to unphysically
low pressures and energies at low temperatures, as the
screening approximation breaks down and electrons oc-
cupy bound states.

In addition, Fig. 5 shows the nuclear pair-correlation
functions gNa-Na(r) computed in DFT-MD and PIMC
simulations using an 8-atom simulation cell at 106 K and
8-fold compression. The good agreement in the gNa-Na(r)
between the two methods shows that PIMC and DFT-
MD predict consistent ionic plasma structures. This is
further confirmation that the fixed-node approximation
in PIMC and the exchange-correlation and pseudopoten-
tial approximation in DFT-MD do not inhibit the accu-
racy of these methods in the WDM regime.

C. Shock compression

In dynamic compression experiments, the conserva-
tion of mass, momentum, and energy constrains a steady
shock to follow the Rankine-Hugoniot equation88

H(T, ρ) = (E − E0) +
1

2
(P + P0)(V − V0) = 0, (5)
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where (E0, P0, V0) and (E,P, V ) represents the inter-
nal energy, pressure, and volume of the initial and the
shocked state, respectively. The EOS (E and P on a
grid of T and V ) data in the previous section allows us
to solve Eq. 5 with spline fitting.

Given that samples in shock experiments may be pre-
compressed to reach higher-density, lower-temperature
states off the principal Hugoniot, we consider four dif-
ferent initial conditions corresponding to 0.75, 1.0, 1.5,
and 2.0 times ρambient. DFT simulations are performed
at each of these densities to determined the correspond-
ing initial pressures and internal energies.

We thus calculate the Hugoniot curves and represent
them with pressure-density plots in Fig. 6. Two compres-
sion peak maxima are predicted along each of the Hugo-
niot curves, one above 2×106 K and the other below 106

K. We tested different bivariate interpolation methods
for the EOS grid in ρ− T space and observed consistent
compression curves. Small discrepancies (<0.1) in the
compression minimum in between the two peaks is ob-
served. We attribute this to the non-smoothness caused
by the small differences between EOS values obtained by
PIMC and DFT-MD at the corresponding pressure and
temperature conditions.

For comparison, we consider two shock compression
profiles predicted by SESAME89, which is a tabular
database for the thermodynamic properties of materials
that is constructed by connecting available shock wave
data with Thomas-Fermi-Dirac and Mie-Grüneisen the-
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FIG. 7. Temperature and pressure as functions of the com-
pression ratio along shock Hugoniot curves (solid curves) and
those with radiation correction (dotted curves) correspond-
ing to four initial densities 0.75, 1.0, 1.5, and 2 times ρambient.
Corresponding results from SESAME (dashed curves) at two
initial densities are shown for comparison. The background
color in the upper panel reflects the pressure changes.

ory at high densities, and some simple analytic forms at
low densities. The high-temperature limit is sufficiently
described by the Thomas-Fermi-Dirac theory, as is shown
by the remarkable consistency between the SESAME
database and our present first-principles calculations at
T > 2 × 107 K. However, at lower temperatures when
the system includes bound states, Fermi-Dirac breaks
down and the SESAME database becomes insufficient.
SESAME therefore fails to capture shell effects and only
exhibits a single density peak along each Hugoniot curve.

Additionally, Fig. 7 shows temperature and pressure
along the Hugoniot curve as functions of the shock com-
pression ratio ρ/ρ0. When the initial density is the low-
est (ρ0 = 0.75 ρambient), a maximum compression ratio
of ∼5.6 is reached at 6×105 K. The value of this peak
decreases with increasing ρ0, and reduces to 4.7 when
ρ0 = 2.0ρambient. The higher-temperature compression
peak reaches slightly larger compression ratio (4.9) than
the lower peak as the initial density increases. In the
high-temperature limit, the system is almost fully ion-
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ized and approaches the the non-relativistic ideal limit
(ρ/ρ0 = 4.0), regardless of the initial density.

Figure 8 compares the principal Hugoniot curve of sev-
eral elements including He53, C47, N57, O56, Ne55, and
Si1. Interestingly, sodium together with helium show
higher maximum compression ratio than other elements.
We attribute this to the unusual low ambient density of
sodium. In addition, each element imprints a particu-
lar structural signature in its principal Hugoniot curve,
exhibiting compression maximums with different values
and at varied pressures and temperatures, due to the in-
terplay of excitation of internal degrees of freedom, elec-
tronic interactions, and the interaction effects tied to the
initial conditions70.

Figure 1 compares the principal Hugoniot curve of
sodium from our first-principles calculations and those
predicted by widely-used EOS models, SESAME89,
LEOS90,91, and average-atom Purgatorio (Lynx)92,93.
The compression maxima along the Hugoniot curves
are closely related to ionization and interaction effects.
SESAME and LEOS do not explicitly include informa-
tion about electronic shell structure, and therefore do not
show two distinct compression maxima. On the other
hand, the DFT-based, average-atom Purgatorio (Lynx)
model does compute the shell structure for an average of
multiple ionization states. Therefore, Purgatorio (Lynx)
agrees well with our first-principles results at above 200
GPa or 105 K. Below that, it is less reliable, because
average-atom approaches cannot treat bonding and many
body effects in a dense fluid properly. This is demon-
strated by the deviation of the Hugoniot curve by Pur-
gatorio (Lynx) from our calculations, which agrees with
those predicted by SESAME and LEOS database, which
were constructed by extrapolating experimental values.

We also compare our principal Hugoniot results with
available experimental33–35 and theoretical42,44 data
available at low temperatures and pressures. In compari-

son with the experimental data, the local pseudopotential
theory42 underestimates the pressure by up to 30 GPa.
The EAM model44 agrees well with experiments up to
110 GPa, above which the model becomes invalid. No-
tably, DFT-MD, LEOS, and SESAME lie 10-20 GPa be-
low the higest-pressure experimental data, but all meth-
ods tend to agree with the experimental data at the low-
est pressures.

The shock velocity us and the particle velocity up that
are of interests in shock experiments can be calculated
using64

u2s = ξ/η and u2p =
√
ξη, (6)

where ξ = (P − P0)/ρ0, η = 1 − ρ0/ρ. Figure 9 com-
pares the relation between us and up of sodium from our
first-principles calculations and those predicted by the
SESAME database, low-pressure (P < 102 GPa) shock
experiments on sodium34,35, and an “universal Hugo-
niot”94 obtained from high-pressure (up to 0.2 Gbar) ex-
perimental Hugoniot data on Al, Fe, Cu, and Mo. We
find the us−up relation is well consistent with the linear
relations predicted by experiments at us < 15 km/s34,35,
but increasingly deviates from them when the shock ve-
locities exceeds ∼500 km/s. This high velocity corre-
sponds to a shock pressure of ∼1.9 Gbar along the prin-
cipal Hugoniot curve, and temperature of ∼ 107 K, at
which the atoms are nearly fully ionized (see the dis-
cussion in Sec. III D). The deviation from the “universal
Hugoniot” of fluid metals94 is more evident. This reflects
a fundamental difference between the effects of ionization
on shock compression in sodium and in heavier metals,
such as Fe, Cu, and Mo. The us−up profile by SESAME
agrees remarkably well with our first-principals predic-
tions, which is not unexpected because of the nearly lin-
ear relation between us and up and the consistency be-
tween SESAME and our Hugoniot data at low (< 104

K) and high (> 107 K) temperature and pressure condi-
tions (Figs. 6-7). Starting from pre-compressed sodium
at 2 times ambient density, the shock velocity is higher
but the slope dus/dup remains 1.31, according to linear
interpolation.

When temperature exceeds 107 K, the radiation con-
tribution becomes important. In order to evaluate the ra-
diation effect on shock compression, we consider an ideal
black body scenario and add the photon contribution to
the EOS using

Pradiation =
4σ

3c
T 4 and Eradiation = 3PradiationV, (7)

where σ is the Stefan-Boltzmann constant and c is the
speed of light in vacuum. We then re-construct the Hugo-
niot curves and show them Figs. 1 and 7. We find that
the two compression peaks remain unchanged as we in-
clude radiative effects. However, the Hugoniot curves
deviate significantly from the classical limit above 107 K
and tend towards a compression ratio asymptote of 7.
These results imply that the radiation contribution plays
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FIG. 9. us−up diagram of sodium along two Hugoniot curves
corresponding to initial densities of 1.0 and 2.0 times ambient
density. The linear relations found in experiments are shown
in dashed lines for comparison. The inset is a closer look at
the low-velocity region. Shock pressures along the principal
Hugoniot curve are ∼1.9 Gbar at shock velocities near 500
km/s.

a significant role in the shock compression of materials at
extreme temperatures (T > 107 K) and pressures (P > 1
Gbar). In comparison, the pressure-contribution from
relativistic effects, included in the Purgatorio (Lynx)
model is much smaller (Fig. 1).

D. Ionization

The structure of the Hugoniot curves observed in the
previous section can be understood from the density-
temperature dependence of the ionization process. In
order to examine this relation, Fig. 10 shows the number
of electrons near the nucleus for a given temperature and
density, NNa−e(r), given by the formula

N(r) =

〈
1

NI

∑
e,I

θ(r − |~re − ~rI |)

〉
, (8)

where the sum includes all electron-ion pairs and θ rep-
resents the Heaviside function.

The NNa−e(r) functions at two different densities and
a series of temperatures are compared with ionization
states of isolated sodium ions (calculated with GAMESS).
The results show that NNa−e(r) decreases with T , indi-
cating the gradual ionization of the atoms with temper-
ature. The energy levels of the 1s electrons are much
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r (Bohr)

0

2

4

6

8

10

N
N

a
−

e
(r

)

Na9 +

Na7 +

Na5 +

Na3 +
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FIG. 10. Number of electrons near each nucleus at two den-
sities (ρ = 2 and 12 times ρambient) and a series of increasing
temperatures. The profiles of four different ionization states
of an isolated sodium atom, calculated with GAMESS), are
shown for comparison.

deeper than those of the outer-shell electrons, and there-
fore only become excited above 2× 106 K. This indicates
that the upper peak on the Hugoniot curve in Figs. 6
and 7 are related to the excitation of the K-shell elec-
trons, while the lower peaks correspond to the excitation
of L-shell electrons.
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IV. CONCLUSIONS

In this work, we construct a thermal density matrix
with localized, HF orbitals to construct fermion nodal
surfaces and perform PIMC simulations of the second-
row element sodium. We obtain an accurate EOS to
temperatures of 129-1 million Kelvin, at which the results
are consistent with DFT-MD. The excellent agreement
between the PIMC and DFT-MD validates the use of
the pseudopotential that freezes 1s electrons and the use
of zero-temperature exchange-correlation functionals up
to temperateures of 2× 106 K.

By investigating the shock compression curves using
the obtained EOS data, we find two compression max-
ima along the Hugoniot curves. This is in contrast to the
single-peak Hugoniot curve predicted by the SESAME
and the LEOS database, which are based on models that
neglect bonding and many body effects. The higher-
temperature compression maxima occurs at 6 × 106 K
due to the significant excitation of 1s electrons, while the
lower compression maximum is due to the thermal exci-
tation of outer-shell electrons. We predict a maximum
compression ratio of 5.3 along the principal Hugoniot,
and compression ratios of greater than 5 can be reached
when the initial density is less than 1.5 ρambient. The
value decreases at higher initial densities due to stronger
particle interaction, and vice versa. Including a radiation
contribution, shock Hugonits are modified significantly
above 107 K and 1 Gbar and a much higher compression
ratio can be reached.
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20J. Ibañez Azpiroz, B. Rousseau, A. Eiguren, and A. Bergara,
Phys. Rev. B 89, 085102 (2014).

21M.-s. Miao and R. Hoffman, J. Am. Chem. Soc. 137, 3631 (2015).
22I. I. Naumov and R. J. Hemley, Phys. Rev. Lett. 114, 156403

(2015).
23E. Gregoryanz, O. Degtyareva, M. Somayazulu, R. J. Hemley,

and H.-k. Mao, Phys. Rev. Lett. 94, 185502 (2005).
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