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Abstract

For efficient first-principles computation of crystalline materials at high density and tem-
perature, an optimal choice of the supercell is important to minimize finite size errors.
An algorithm is presented to construct compact supercells for arbitrary crystal struc-
tures. Rather than constructing standard supercells by replicating the conventional unit
cell, we employ the full flexibility that we gain by using arbitrary combinations of the
primitive cell vectors in order to construct a series of cubic and nearly cubic supercells.
In cases where different polymorphs of a material needed to be compared, we are able
construct supercells of consistent size. Our approach also allows us to efficiently study
the finite size effects in systems like superionic water where they would otherwise dif-
ficult to obtain because a standard replication of the unit cells leads to supercells that
are too expensive to be used for first-principles simulations. We apply our method to
simple, body-centered, and face-centered cubic as well as hexagonal close packed cells.
We present simulation results for diamond, silica in the pyrite structure, and superionic
water with an face-centered cubic oxygen sub-lattice. The effects of the finite simulation
cell size and Brillouin zone sampling on the computed pressure and internal energy are
analyzed.

Keywords: Ab initio molecular dynamics, density functional theory

1. Introduction

First-principles computer simulations contribute to our understanding of a wide range
of phenomena in physics [1], chemistry [2], geophysics [3, 4, 5], and to some extend also
in molecular biology [6]. While ground-state calculations of crystalline materials can
often be performed in primitive crystallographic cells with a small number of atoms,
simulations at finite temperature require cells with a much larger number of atoms. To
simulate liquids, one typically chooses cubic cells [7] and increases the number of atoms
until the artificial correlation, that is introduced by the periodic boundary conditions,
has a negligible impact on the computed properties [8]. Simulations of crystalline mate-
rials often require the consideration of a comparable number of atoms. Therefore, one

Email address: militzer@berkeley.edu (B. Militzer)
URL: http://militzer.berkeley.edu (B. Militzer)

Preprint submitted to Elsevier September 29, 2016



constructs supercells by replicating the primitive cell in all spatial directions. Such super-
cells allow one to perform density functional molecular dynamics simulations (DFT-MD)
to determine the thermodynamic properties of solids [9, 10, 11] at elevated temperatures
where the quasi-harmonic approximation is no longer applicable [12]. Quasi-harmonic
calculations typically use primitive cells and perturbation theory [13] but, occasionally,
supercells are still in use [14]. Supercells are also employed to study the effects of disor-
der in different types of alloys and solid solutions [15, 16, 17, 18]. Computational stud-
ies of defects in solids also require supercells to reduce the interaction between defect
images [19, 20, 21, 22, 23, 24, 25, 26, 27]. For simulations of materials with incom-
mensurate crystal structures, one also constructs periodic supercells that approximate
incommensurate spatial periodicities as close as possible [28, 29]. The determination
of the magnetic state of a structure with multiple transition metal atoms may also re-
quire supercells [30, 31, 32]. The computation of x-ray absorption near edge structures
(XANES) is performed in supercells [33]. Direct melting simulations and the two-phase
methods [34, 35] also rely on supercells. Variable cell dynamics simulations [3] as well
as the study of amorphization [36] and other structural changes in solids [37] employ su-
percells as well. Quantum Monte Carlo (QMC) calculations employ supercells to better
capture the interaction effect between all electrons [38, 4, 39]. Since QMC calculations
are significantly more expensive than density functional simulations, one is even more
constrained when choosing the supercell.

Despite all these applications, no general algorithm exists to construct appropriate
supercells molecular dynamics or Monte Carlo simulation where one wants to minimize
the artificial interaction between period images. For cubic cells, one typically replicates
the unit cell uniformly in all spatial directions, n×n×n. This may, however, lead rather
rapidly to cells that are prohibitively expensive. In the case of superionic water in a
face-centered cubic (fcc) structure, the cubic unit cell has four water molecules. Thus, in
Ref. [40], most simulations were performed in a 2×2×2 with supercell with 32 molecules
and only one, rather demanding finite-size test with 108 molecules was conducted. In an
earlier study of body-centered cubic (bcc) superionic water [41], results for 2× 2× 2 and
3 × 3 × 3 supercells with 56 and 128 molecules, respectively, were reported. No other
cells were considered while, as we demonstrate in the article, a number of intermediate
nearly cubic cells could have been chosen to facilitate a more efficient finite-size analysis.

Supercells of different shapes have constructed to study solid solutions where, e.g.,
atoms of type A or B can occupy the sites in an fcc or bcc lattice [42]. Algorithms have
been advanced to generate all possible configurations for a given supercell size [43] and
efficient methods exit to remove symmetry-equivalent configurations [44]. The goal of
our algorithm is different, however. We do not deal with atomic disorder and, rather
than generating all possible supercells, we want to construct the best possible supercell
for a given size in order to minimize finite-size effects in many-body simulations.

The question of choosing the appropriate supercell becomes even more difficult when
one deals with non-cubic primitive cells. For orthorhombic structures, one may construct
n1×n2×n3 supercells that are nearly cubic while preserving the orthorhombic character.
For arbitrary triclinic cells, it is less obvious how to proceed. For water ice at megabar
pressures [45], a monoclinic structure with P21 symmetry, an orthorhombic structure
with Pcca, and a hexagonal structure with P3121 symmetry have recently been predicted
to form at zero temperature [46]. To determine whether these groundstate structures
lead to superionic systems that are thermodynamically more stable than the recently
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predicted fcc structure, one needs to construct supercells, heat the structure up in with
DFT-MD simulations and compare their Gibbs free energies that may be obtained via
thermodynamic integration (TDI) [40]. For the monoclinic, orthorhombic, hexagonal
structures, one would want to construct supercells that are again nearly cubic. Ideally
one would choose a cell of comparable size as in the bcc and fcc calculations but there is
no straightforward method available to construct such cells.

The question how to construct supercells of comparable size for different structures
will always be relevant when a material has different polymorphs that need to be com-
pared. Silica, SiO2 is a archetypal example with more than ten crystal structures [4, 5].
Its pyrite-type polymorph has a cubic unit cell with 12 atoms. We will demonstrate that
various reasonable supercell choices exist in additiona to a simple n× n× n replication.

Recently, significant progress has been made in predicting groundstate crystal struc-
tures with evolutionary algorithms [47], random search techniques [48, 46], and others
methods [49], and number of theoretical predictions have later been confirmed experi-
mentally [50]. Crystal structure prediction at higher temperature outside of the quasi-
harmonic regime is more difficult and requires the comparison of the Gibbs free energy
of thousands of structures. Supercells need to be constructed in order to facilitate DFT-
MD simulations and TDI calculations [51, 52, 53, 54, 55]. Rather than relying on human
intervention, we would want to use a computer algorithm that constructs reasonable
supercells automatically for any cell shape, which is the goal of this article.

2. Methods

Rather than constructing standard n×n×n supercells by replicating the conventional
unit cell, we employ the full flexibility that we gain by using an arbitrary combination of
the primitive cell vectors, ~a, ~b, and ~c. We construct vectors of the supercell from a linear
combination of the primitive cell vectors [56],

~aSS = ia~a+ ja~b+ ka~c ,
~bSS = ib~a+ jb~b+ kb~c , (1)

~cSS = ic~a+ jc~b+ kc~c .

For each supercell vector, the coefficients i, j, and k are arbitrary integers that we restrict
to take values from −n to n. We typically set n between 5 and 10. ja, ka, and kb can be
set zero for bcc and fcc lattices [44]. In general, however, the construction of a supercell
turns into a 9-dimensional optimization problem but symmetry arguments can be used
to reduce the search space significantly,

[
~aSS,~bSS,~cSS

]
(VSS) =

n
max
ia=1

n
max
ja=−n

n
max
ka = −n∣
~aSS
∣
> 0

ia
max
ib=−ia

n
max
jb=−n

n
max
kb = −n∣∣~bSS∣∣ > 0

[ . . .

. . .
|ib|

max
ic=−|ib|

|jb|
max

jc=−|jb|

n
max
kc = −n

(~aSS ×~bSS) · ~cSS = VSS

O(~aSS,~bSS,~cSS) ] .(2)

The volume of the supercell can only be a multiple of primitive cell volume, VSS = mVP.
For a given volume ratio, m, one needs to decide what optimization criteria, O, to employ.
There are two obvious choices.
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(a) First one can maximize the distance to the nearest periodic image, dmin. In the
limit of large m, this will not lead to formation of cubic cells. Rather hexagonal cells
with |~aSS| = |~bSS| = |~cSS|, α = β = 90◦, and γ = 120◦ will be favored 1 . While this may
be a valid criteria for some problems, for fcc systems, it means that the conventional
cubic supercells would not be reproduced.

(b) Alternatively one can design compact cells by minimizing the radius of a sphere
that is needed to enclose the supercell. For a given cell, this radius is given by the
maximum distance that any cell corner is separated from the cell center,

Rmax = max
i = {−1,+1}
j = {−1,+1}
k = {−1,+1}

1

2

∣∣∣i~aSS + j~bSS + k~cSS

∣∣∣ . (3)

This criteria allows us to pick cubic and nearly cubic cells. For the remainder of this
article, we employ the following optimization strategy. We use (b) as our primary criteria.
If the Rmax values of two cells are identical, we select the cell with the larger minimum
image distance, dmin. In rare cases where both of those values are identical also, we prefer
the cell where the angles deviate the least from 90◦ and where the cell vectors deviate
the least from each other in length.

The minimum image distance is defined as,

dmin =
∞

lim
n=1

n
min

(i, j, k) = −n
i2 + j2 + k2 > 0

∣∣∣i~aSS + j~bSS + k~cSS

∣∣∣ , (4)

but one needs a more efficient method for its determination that is applicable to arbitrary
cell shapes. We use the following approach where the lattice vectors are re-assigned
to point to closer images. We start with the assignment, ~a′SS = ~aSS, ~b′SS = ~bSS, and

~c′SS = ~cSS and order the vectors by magnitude such that, |~a′SS| ≤ |~b′SS| ≤ |~c′SS|. Then we
successively derive new vectors that point to closer and closer images using the following
re-assignments,

~b′SS → ~b′SS − ~a′SS round [~b′SS · ~a′SS /~a′2SS ] , (5)

~c′SS → ~c′SS − ~a′SS round [~c′SS · ~a′SS /~a′2SS ] , (6)

~c′SS → ~c′SS −~b′SS round [~c′SS ·~b′SS /~b′2SS ] . (7)

We keep re-assigning and re-ordering these vectors until no more changes occur. Then
we can derive dmin from ~a′SS, ~b′SS, and ~c′SS by setting n = 1 in Eq. (4).

3. Discussion of Cell Design

In Fig. 1, we plotted Rmax and dmin for the supercells that we constructed by starting
from the primitive cell of fcc lattice. For every cell size VSS/VP, we identified the most
compact cell according to the optimization criteria that we derived in the previous section.
The goal was to construct cells with an Rmax that is as close as possible to the ideal value

1We derived this result using a simulated annealing technique that optimized minimum image distance
by varying all cell parameters at constant volume.
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N
VSS
VP

Rmax
a

dmin
a

ia ja ka ib jb kb ic jc kc
|aSS|
a

|bSS|
a

|cSS|
a

α(◦) β(◦) γ(◦)

3 1 0.791 0.707 1 0 0 1 -1 0 0 0 -1 0.707 0.707 0.707 90 120 60

12 4† 0.866 1.000 1 1 -1 1 -1 1 1 -1 -1 1.000 1.000 1.000 90 90 90
21 7 1.118 1.225 1 1 0 -1 2 -1 -1 0 2 1.225 1.225 1.225 100 80 80
39 13 1.500 1.581 2 1 -1 2 -1 -2 -1 1 -2 1.581 1.581 1.581 72 107 72
69 23 1.768 1.732 3 -1 0 -1 3 -1 -1 0 3 1.871 1.732 1.871 90 86 108
78 26 1.732 1.871 2 1 0 -2 3 -1 -2 0 3 1.871 1.871 1.871 86 94 94

96 32† 1.732 2.000 2 2 -2 2 -2 2 2 -2 -2 2.000 2.000 2.000 90 90 90
114 38 1.871 2.121 2 2 -1 -2 3 -2 -2 1 3 2.121 2.121 2.121 93 87 87
150 50 2.121 2.345 2 1 1 -2 4 -1 -2 -1 4 2.345 2.345 2.345 98 82 82
210 70 2.424 2.549 3 2 -2 -2 4 -3 -2 2 3 2.549 2.739 2.549 90 88 80
276 92 2.549 2.739 4 1 -2 -3 4 2 -1 3 -4 2.739 3.082 2.739 88 88 95
288 96 2.500 2.828 4 -4 0 -3 -3 3 0 0 -4 2.828 3.000 2.828 90 90 90
300 100 2.693 2.916 4 1 -1 -2 5 -1 -1 -1 5 2.916 2.916 3.000 93 87 80

324 108† 2.598 3.000 3 3 -3 3 -3 3 3 -3 -3 3.000 3.000 3.000 90 90 90

Table 1: Supercells of the fcc structure with 3 atoms per primitive cell, which is needed to calculation
of dense, superionic water. N specifies the number of atoms per cell. VSS/VP is the volume ratio of
the supercell and the primitive cell. Rmax and dmin are the cell radii and minimum image distances
according to Eqs. 3 and 4. The supercells are defined in terms of the integers i, j, and k (Eq. 2), lattice
parameters and angles. All dimensional parameters have been normalized with respect to the lattice
parameter a. Cubic cells with VSS/VP = 4n3 are marked by a †.

N
VSS
VP

Rmax
a

dmin
a

ia ja ka ib jb kb ic jc kc
|aSS|
a

|bSS|
a

|cSS|
a

α(◦) β(◦) γ(◦)

12 1† 0.866 1.000 1 0 0 0 1 0 0 0 -1 1.000 1.000 1.000 90 90 90
36 3 1.500 1.414 1 0 1 1 1 0 1 -1 -1 1.414 1.414 1.732 90 90 60
84 7 2.062 1.732 2 0 1 1 2 0 1 -1 -1 2.236 2.236 1.732 105 75 66

96 8† 1.732 2.000 2 0 0 0 2 0 0 0 -2 2.000 2.000 2.000 90 90 90
156 13 2.291 2.236 2 1 1 1 -2 -1 0 -1 2 2.449 2.449 2.236 90 79 100
168 14 2.236 2.449 2 1 1 1 -2 -1 -1 -1 2 2.449 2.449 2.449 100 100 100
288 24 2.500 2.828 3 0 0 0 2 2 0 2 -2 3.000 2.828 2.828 90 90 90

324 27† 2.598 3.000 3 0 0 0 3 0 0 0 -3 3.000 3.000 3.000 90 90 90
396 33 2.872 3.162 3 1 0 1 -3 -1 0 -1 3 3.162 3.317 3.162 90 96 90
456 38 3.202 3.317 3 1 1 2 -3 0 -1 -1 3 3.317 3.606 3.317 85 95 75
624 52 3.240 3.606 4 0 0 0 3 2 0 2 -3 4.000 3.606 3.606 90 90 90
672 56 3.500 3.742 3 2 1 2 -3 -2 -1 2 -3 3.742 4.123 3.742 97 98 97

768 64† 3.464 4.000 4 0 0 0 4 0 0 0 -4 4.000 4.000 4.000 90 90 90
876 73 3.905 4.123 4 1 1 1 -4 -1 0 -1 4 4.243 4.243 4.123 90 80 93
912 76 3.742 4.243 4 1 1 1 -4 -1 -1 -1 4 4.243 4.243 4.243 93 93 93
1116 93 4.062 4.359 3 3 1 3 -3 -2 -1 2 -4 4.359 4.690 4.583 93 93 96
1200 100 4.031 4.472 5 0 0 0 4 2 0 2 -4 5.000 4.472 4.472 90 90 90

Table 2: Supercells of the simple cubic pyrite structure with N = 12 atoms per primitive cell. All
parameters are given in the format of Tab. 1. Cubic cells with VSS/VP = n3 are marked by a †.

N
VSS
VP

Rmax
a

dmin
a

ia ja ka ib jb kb ic jc kc
|aSS|
a

|bSS|
a

|cSS|
a

α(◦) β(◦) γ(◦)

1 1 0.829 0.866 1 0 0 1 -1 -1 0 -1 0 0.866 0.866 0.866 70 109 70

2 2† 0.866 1.000 1 0 -1 1 -1 0 0 -1 -1 1.000 1.000 1.000 90 90 90
6 6 1.479 1.414 2 -1 -2 -1 2 1 -1 0 -1 1.658 1.414 1.414 90 90 115
9 9 1.479 1.658 2 0 -1 1 -2 -2 -1 1 -1 1.658 1.658 1.658 85 95 85

16 16† 1.732 2.000 2 0 -2 2 -2 0 0 -2 -2 2.000 2.000 2.000 90 90 90
21 21 2.062 2.179 3 -1 -2 -1 3 1 -1 0 -2 2.236 2.179 2.179 87 96 96
25 25 2.278 2.236 3 -1 -3 -2 3 1 -1 -1 -2 2.598 2.236 2.236 90 85 105
28 28 2.236 2.449 3 0 -1 2 -3 -3 -1 1 -2 2.449 2.449 2.449 80 100 80
35 35 2.278 2.598 3 0 -2 -2 3 0 0 -2 -3 2.598 2.598 2.598 88 92 88
48 48 2.500 2.828 3 0 -3 2 -4 -2 -2 0 -2 3.000 2.828 2.828 90 90 90
53 53 2.861 2.958 3 1 -1 3 -3 -4 -2 3 -1 2.958 3.000 3.162 96 84 74

54 54† 2.598 3.000 3 0 -3 3 -3 0 0 -3 -3 3.000 3.000 3.000 90 90 90
65 65 3.031 3.279 4 0 -1 3 -4 -4 -1 1 -3 3.279 3.279 3.279 78 102 78
84 84 3.112 3.317 4 0 -2 2 -4 -4 -2 3 -2 3.317 3.317 3.841 92 88 85
91 91 3.112 3.571 4 0 -3 -3 4 0 0 -3 -4 3.571 3.571 3.571 89 91 89
103 103 3.345 3.606 5 -1 -2 -2 5 3 0 -1 4 3.742 3.606 3.841 92 94 94
107 107 3.419 3.742 5 -1 -2 2 -5 -4 -1 2 -3 3.742 3.841 3.742 90 94 86
112 112 3.419 3.841 5 -1 -1 -1 5 1 -1 1 5 3.841 3.841 3.841 95 85 85

128 128† 3.464 4.000 4 0 -4 4 -4 0 0 -4 -4 4.000 4.000 4.000 90 90 90

Table 3: Supercells of the bcc lattice with one atom per primitive cell. All parameters are given in the
format of Tab. 1. Cubic cells with VSS/VP = 2n3 are marked by a †.
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N
VSS
VP

Rmax
a

dmin
a

ia ja ka ib jb kb ic jc kc
|aSS|
a

|bSS|
a

|cSS|
a

α(◦) β(◦) γ(◦)

2 1 0.668 0.561 1 0 0 1 1 0 0 0 1 0.561 0.561 0.916 90 90 60
6 3 0.958 0.916 2 1 0 1 -1 0 0 0 -1 0.972 0.972 0.916 90 90 60
12 6 1.075 0.972 2 2 1 1 1 -1 -1 1 0 1.449 1.075 0.972 90 90 98
16 8 1.122 1.122 2 0 0 1 2 1 1 2 -1 1.122 1.336 1.336 87 90 90
22 11 1.365 1.336 3 1 0 1 2 1 0 -2 1 1.485 1.336 1.449 93 82 76
28 14 1.476 1.449 2 -1 1 -2 -2 1 0 -2 -1 1.745 1.449 1.449 96 80 78
32 16 1.449 1.485 3 1 0 -1 -3 0 0 0 -2 1.485 1.485 1.833 90 90 98
42 21 1.554 1.745 3 1 1 2 3 -1 -1 2 1 1.745 1.745 1.745 85 95 85
54 27 1.745 1.917 3 0 1 3 3 -1 0 -3 -1 1.917 1.917 1.917 99 81 81
74 37 1.896 2.023 4 1 0 -1 -4 -1 -1 -2 2 2.023 2.221 2.075 87 96 88
78 39 1.978 2.075 4 2 1 1 -3 -1 -1 -2 2 2.149 2.221 2.075 93 80 89
84 42 2.017 2.149 3 -1 1 -3 -4 1 0 -2 -2 2.221 2.221 2.149 91 91 82
106 53 2.168 2.221 4 0 1 3 4 -1 0 -3 -2 2.425 2.221 2.489 97 88 85
124 62 2.297 2.359 5 2 0 -1 -4 2 -1 -3 -2 2.446 2.730 2.359 93 98 95
130 65 2.342 2.425 4 0 1 3 4 -2 0 -3 -2 2.425 2.730 2.489 82 88 94
138 69 2.297 2.446 5 1 0 -2 -5 0 0 0 -3 2.572 2.446 2.749 90 90 94
152 76 2.398 2.612 4 2 2 3 4 -2 -2 3 1 2.672 2.730 2.612 90 92 94
160 80 2.398 2.672 5 0 0 2 4 2 2 4 -2 2.806 2.672 2.672 87 90 90
176 88 2.441 2.730 5 0 1 3 4 -2 -1 -4 -2 2.952 2.730 2.730 91 91 91
180 90 2.446 2.749 6 3 0 0 -5 0 0 0 -3 2.916 2.806 2.749 90 90 90
200 100 2.567 2.806 5 0 0 3 6 1 1 2 -3 2.806 3.057 2.916 88 90 90

Table 4: Supercells of hexagonal close packed lattice with the ideal ratio, c/a =
√

8/3. All parameters
are given in the format of Tab. 1.

of cube, V
1/3
SS

√
3/2. For cubic cells with VSS/VP = 4n3, this value is recovered. For all

other cells, Rmax is found to reasonably close to the ideal value. The deviations are
typically no larger than 0.25 a, where a is the size of the cubic.

The lower panel Fig. 1 shows the minimum image distances for every cell. For a given
cell size, this value should be as large as possible in order to minimize the correlation
effects between particles during molecular dynamics simulations. One notices that for

some cells, the dmin falls above the curve for a cubic cell given by dcubicmin = V
1/3
SS . This

is because hexagonal cells, rather than cubic ones, have the largest minimum image
distances for given volume.

Furthermore one notices that dmin does not monotonously increase with volume.
One would have expected that a larger cell size automatically leads to an increase in the
minimum image distance. However, the constructed cells differ in shape and in many
cases, the minimum image distance of a larger cell is smaller or equal to that of a well-
selected smaller one. So it is not obvious why one should invest the computer time into
simulating with a larger cell if it does not also lead to an increase in the minimum image
distance over all possible smaller cells. For this reason, we selected a subset of cells where
an increase in size also leads to a new record in the minimum image distance compared
to all smaller cells. We marked the cells in this subset with circles and squares in Fig. 1
and reported their parameters in Tab. 1. The ideal cubic cells are included in the subset.
From now on we refer to this subset as set of compact cells. All DFT-MD simulations,
to be discussed in this article, were performed for such compact supercells. Tables 2, 3,
and 4 list the parameters for the compact supercells for simple cubic, bcc, and hexagonal
close packed lattices, respectively.

The angles and supercell vector lengths in Tab. 1 show that it becomes easier to
construct nearly cubic supercells with increasing cell size. For large supercells there
are simply more possibilities to combine the primitive cells to construct supercells with
specific size. In the limit of infinite supercells size, one expects the deviations from a
cubic shape to disappear completely. Already for VSS/VP ≥ 13, one finds that all cell
angles deviate from 90◦ by 10.5◦ or less. All vector lengths deviate by less then 8.5%
from the corresponding value of a cubic cell.
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Figure 1: (Color online) Radius, Rmax, (Eq. 3) and minimum image distance, dmin, (Eq. 4) of supercells
that were constructed from the primitive cell of fcc lattice with lattice parameter a. The solid, blue lines
correspond to cells with smallest Rmax for a given cell volume. The open circles correspond to a subset
of selected, compact cells that have a larger minimum image distance than all smaller cells. The squares
denote cubic supercells with VSS = 4n3VP where n is an integer. The dash-dotted line shows Rmax and
dmin for a cubic cell of arbitrary, non-integer values of n.

4. Accommodation of Two Crystal Structures

Our optimization scheme in Eq. 2 is general and can be combined with other design
criteria, O(~aSS,~bSS,~cSS), for specific applications. We will give one more example in this
section where we design supercells that can accommodate two different crystal structures.
We will construct supercells that are commensurate with, e.g., an fcc and an hcp lattice,
which becomes of interest for crystallization calculations where one wants to eliminate,
or at least minimize, the bias from a particular supercell choice. This is of interest for
the simulation of materials that show an hcp-fcc transition in their pressure-temperature
phase diagrams, such as gold [57], iron at 30 GPa and elevated temperatures [58] as well
as at 700 GPa and low temperature [59], iron-nickel alloys at conditions of the Earth’s
core [60] and many others.

The task of finding a supercell that accommodates two crystal structures shares
some similarities with constructing approximate, commensurate cells for incommensu-
rate structures [28, 29] where one needs to capture the periodicities among the host and
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N δ
a

ia ja ka ib jb kb ic jc kc
|aSS|
a

|bSS|
a

|cSS|
a

α(◦) β(◦) γ(◦)
hcp: 156 0 5 7 0 -3 1 0 0 0 3 6.245 3.606 4.899 90 90 90
fcc: 5 -7 2 -3 -1 4 2 2 2 6.245 3.606 4.899 90 90 90

hcp: 480 0 6 6 3 -4 4 0 -4 -4 3 7.746 6.928 6.325 90 90 90
fcc: -6 8 -4 0 -4 -4 6 2 -6 7.746 6.928 6.325 90 90 90

bcc: 160 0.045 5 0 5 4 4 0 0 4 4 5.000 4.000 4.000 90 90 90
fcc: 4 4 -4 2 -2 -4 -4 4 -2 5.040 3.984 3.984 90 90 90

bcc: 847 0.027 7 -4 2 -6 -8 -7 4 3 -7 7.921 6.225 8.602 89 88 87
fcc: -7 -3 10 -6 2 -3 4 -11 0 7.918 6.236 8.592 89 88 87

Table 5: Supercells that can accommodate hcp and fcc crystals as well as bcc and fcc crystals. N specifies
the number atoms per cell. The mismatch parameter, δ, and the supercell vectors are given in units of
lattice parameter abcc and ahcp, respectively.

the guest atoms [61]. However, there is one important difference. In our case, there is no
need for both structures to be aligned in the supercell. In fact, when we minimize the
mismatch between hcp and fcc supercell vectors, we allow for an arbitrary rotation by
the Euler angles, φ,θ, and ψ. We introduce the rotation matrix, Rφ,θ,ψ, and define the
mismatch parameter,

δfcc−hcp = min
φ,θ,ψ

[
(~afccSS −Rφ,θ,ψ ~a

hcp
SS )2 + (~bfccSS −Rφ,θ,ψ~b

hcp
SS )2 + (~cfccSS −Rφ,θ,ψ ~c

hcp
SS )2

]1/2
,

(8)
that measures the deviation between the both sets of lattice vectors. We minimize δ
by first determining the 100 most compact hcp supercells for a given size. For each
hcp supercell, a pick a random rotation matrix, and identify the closest set of fcc lattice
vectors. We use the BGFS algorithm [62] to optimize the Euler angles in order to converge
to the closest local minimum of δ. This procedure is repeated many times in an attempt
to find the global minimum of δ. The goal of this optimization is to construct supercells
that can accommodate fcc and hcp lattices.

Figure 2 and Table 5 report the best supercells that we constructed. We able to obtain
two compact supercells with respectively 156 and 480 atoms that accommodate and hcp
and fcc lattices perfectly. Many other supercells with a small mismatch parameter of
δ < 0.07 ahcp have been identified as well.

We also constructed supercells that can accommodated a bcc as well as an fcc crystal
structure, which would be of interest for the simulation of sodium [63], lithium [64],
xenon [65], and Yukawa systems [66]. One could expect that accommodating an bcc and
an fcc structures in one supercell to be straightforward because both are cubic structures.
However, one would want to keep the particle density the same, which implies there bcc
and fcc lattice parameters differ by a factor of 21/3. Since this is an irrational ratio,
we cannot expect to find a supercell that accommodates both crystals perfectly. Still
our best cells in Tab. 5 with N = 160 and 847 atoms have a small mismatch, δ, of only
0.0455 and 0.0270 abcc, which means the lattice vectors differ by less than 0.8% and 0.2%
respectively. The impact of this deviation may be reduced further by setting the lattice
vectors in the simulation to the average of the bcc and fcc supercell vectors so that both
structures are affected equally by the constraints of the supercell.

5. Results from Ab Initio Simulations

In this section, we compare the internal energy and pressure that we obtained with
DFT-MD simulations in compact supercells of various sizes. To cover a range of appli-
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Figure 2: (Color online) Mismatch parameter, δ, (Eq. 8) between bcc and hcp lattices (upper panel) and
fcc and hcp lattices (lower panel) for supercells with different numbers of particles. δ is plotted in units
of lattice parameter abcc and ahcp, respectively. The arrows in the lower panel mark cells with 156 and
480 atoms, respectively, that can perfectly accommodate an hcp and an fcc lattice.

cations, we selected three representative systems with very different character. First we
presents results of diamond, a hard, monatomic, covalently bonded solid. As an example
for an ionic material, we discuss simulations of SiO2 silica in the cubic pyrite structure.
Finally we compare results for superionic water where the oxygen atoms are arranged
on a fcc lattice. Superionic behavior [67] may occur in materials like α-AgI that are
composed of ions with very different radii. The large ions, in this case I−, remain locked
in place and vibrate around lattice site like atoms in a solid while the smaller ions, Ag+,
move throughout the lattice like a fluid. This behavior has been predicted theoretically
to occur in water at megabar pressures [68]. Recent simulations predicted a phase change
to an fcc oxygen sub-lattice [40].

All DFT-MD simulations were performed with the VASP code [69]. We used pseu-
dopotentials of the projector-augmented wave type [70], the exchange-correlation func-
tional of Perdew, Burke and Ernzerhof [71], and a cutoff energy of 900 eV for the plane
wave expansion of the wavefunctions. The Brillioun zone was sampled with the zone-
average Balderesci point [72] as well as with 2 × 2 × 2 and 4 × 4 × 4 Monkhorst-Pack
k-point grids [73]. The occupation of electronic states are taken to be a Fermi-Dirac
distribution set at the temperature of the ions [74]. The simulation time ranged between
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Figure 3: (Color online) Pressure and internal energy of diamond derived from DFT-MD simulations at
5000 K and 5.02 g cm−3 using compact supercells with different numbers of atoms, N and k-point grids
for the Brillioun zone sampling. Error bars are shown unless they are smaller than the size of the symbols.
For zone-average Balderesci k-point curve, we used squares to mark cases where the constructed, compact
cells coincided with the standard, cubic supercells with N = 8n3.

2.0 and 10.0 ps. An MD time step of 0.20, 0.75, and 0.80 fs was used for ice, diamond,
and SiO2, respectively.

Finite size effects in DFT-MD simulations with periodic boundary conditions do not
only arise from a finite number of ions and but also from an incomplete sampling of
the Brillioun zone. One cannot completely separate one effect from the other because
of k-point folding. When a supercell is constructed using a fixed set of k-points, this
already implies a more accurate Brillioun zone sampling compared to the primitive cell.
This is the reason why one typically uses a very small number of k-points in DFT-
MD simulations and rather invests the available CPU time into simulating more atoms.
Earlier simulations of dense carbon used the Γ point but more recent work employed
the Balderesci point [11]. Figure 3 shows pressure and internal energy derived from
simulations of various cell sizes. A typical supercell with 64=8×23 atoms [11] yielded a
pressure of 344 GPa. Relying on cubic supercells alone, would make it very challenging
to determine the magnitude of the remaining finite size error (−1.4% in pressure) and
correct for it efficiently. One could compare with the results from simulations in a tiny cell
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Figure 4: (Color online) Pressure and internal energy of fcc superionic ice from DFT-MD simulations
at 4000 K and 6.00 g cm−3 using compact supercells with different numbers of atoms, N , and k-point
grids for the Brillioun zone sampling.

with 8 atoms, the only available cubic cell that is smaller, and then linear extrapolation
as function of 1/N . One would not know, however, how reliable such an extrapolation
would be unless one obtains results the next larger cubic cell with 216=8×33 atoms.
As Fig. 3 shows, we were able to perform such large simulations and confirm that the
extrapolations for the pressure and energy are reasonably accurate but this test required
a disproportionate amount of computer time. For more complex minerals that have unit
cells with more atoms, such large supercell calculation may not be feasible.

Fig. 3 also shows simulation results based on our compact supercells that we con-
structed by starting from a 2 atom primitive cell of the fcc lattice. The supercell pa-
rameters are given in Tab. 1. Both pressures and internal energies from simulations with
76, 100, 140, and 184 atoms are in very good agreement with 216 atom results. This
highlights the quality of the compact supercells that we constructed. Simulations with
smaller cells are significantly faster. This also makes easier to determine how long one
needs to run simulation to reach a certain accuracy.

The results from simulations with the Balderesci point in Fig. 3 show an overall trend
for pressure and energy to decrease with system size. This is partially due to insufficient
sampling of the Brillioun zone. Results from simulation of with 2× 2× 2 and 4× 4× 4
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Figure 5: (Color online) Pressure and internal energy of silica, SiO2, in the cubic pyrite structure from
DFT-MD simulations at 5000 K and 7.56 g cm−3 using compact supercells with different numbers of
atoms, N , and k-point grids.

k-point grids converge much faster with system size and pressure and energy tend to
increase with system size.

We select superionic water as the next test case for the application of our compact
supercells. In each case, we started from a perfect fcc oxygen sub-lattice and then
gradually increased the temperature in the DFT-MD simulations until the system reached
a temperature of 4000 K where the system is superionic. In Fig. 4, we show results for
seven cell sizes in addition to the two cubic supercells with 32=4×23 and 108=4×33 H2O
molecules used in Ref. [40]. 2 × 2 × 2 k-point grids was employed in most calculations
but two tests with 4× 4× 4 points were performed.

A linear trend in the energy per atoms, N , appears as a function of 1/N . Our compact
cells follow this trend in the same way as the two cubic cells. One finds the energy value
of 0.1625 eV/atom from simulations of 32 molecules is not yet converged but that an
extrapolated value of 0.173 eV/atom is more realistic. The pressure appears to converge
to a value of approximately 964.3 GPa. Simulations with a cubic supercell containing
32 molecules appear to yield a pressure that is slightly too low. The simulations with
4× 4× 4 k-points are broadly consistent with the 2× 2× 2 results, only for simulations
with 13 molecules there is a deviation in the pressure.
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In Tab. 3, we list 6 intermediate cell sizes that could have been used to study finite
size effects in simulations of bcc solids in addition to the cubic cells with 54=2×33 and
128=2×43 molecules used in Ref. [41].

Finally, we come to the discussion of the finite size effects in DFT-MD simulations
of silicate in the pyrite structure. Since the primitive cubic cell already has 4 SiO2

molecules, a finite size extrapolations on cubic cells alone would be very challenging.
Using the supercell in Tab. 2, we performed simulations with up to 288 atoms. Results
in Fig. 5 show that finite size error in cubic simulations 96 atoms with the Balderesci
point is already very small. The pressure appears to be overestimated by only 0.4 GPa.
The correction to the internal energy is also very small, only on the order of 4 meV per
atom.

6. Conclusions

We designed and tested a general algorithm for constructing compact supercells for
first-principles simulations of solids. Results for common structures such as sc, bcc, fcc,
and hcp lattices were reported. Since we started from the primitive cell, we were able to
construct compact supercells of intermediate sizes that cannot be obtained with simple
replication of the conventional unit cell. This allowed us to perform a more detailed a
finite size analysis of the DFT-MD simulations of diamond, SiO2, and superionic water.
We demonstrate that the compact supercells can be used the estimate finite size effects
and in most cases, to extrapolate to thermodynamic limit with good precision. We antic-
ipate this will make predictions from computer simulations more reliable for applications
where very large simulation with 1000 atoms or more are still prohibitively expensive. In
addition to the presented computation of thermodynamic properties, our algorithm can
be used to construct supercells to study systems with defects, solid solutions, magnetic
and superionic systems. While we tested our approach only in DFT-MD simulations,
future applications will include quantum Monte Carlo calculations where it is even more
difficult to study large systems routinely.

Acknowledgments

This research is supported by the U. S. Department of Energy, grants DE-SC0010517
and DE-SC0016248.

References

[1] M. E. Tuckermann, J. Phs. Cond. Matter 14 (2002) R1297.
[2] B. Kirchner, P. J. di Dio, J. Hutter (Eds.), Real-World Predictions from Ab Initio Molecular

Dynamics Simulations, Vol. 307 of Topics in Current Chemistry, Springer Berlin, 2012, p. 109.
[3] T. Tsuchiya, J. Tsuchiya, K. Umemoto, R. M. . Wentzcovitch, Proc. Nat. Acad. Sci. 108 (2011)

1252.
[4] K. P. Driver, R. E. Cohen, Z. Wu, B. Militzer, P. L. Rios, M. D. Towler, R. J. Needs, J. W. Wilkins,

Proc. Nat. Acad. Sci. 107 (2010) 9519.
[5] T. Tsuchiya, J. Tsuchiya, Proc. Nat. Acad. Sci. 108 (2011) 1252.
[6] M. Parrinello, Solid State Comm. 102 (1997) 107.
[7] M. Allen, D. Tildesley, Oxford University Press, New York, 1987.
[8] B. Militzer, Phys. Rev. B 79 (2009) 155105.
[9] A. A. Correa, S. A. Bonev, G. Galli, Proc. Nat. Acad. Sci. 103 (2006) 1204.

13
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