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ABSTRACT9

We study the relationship of zonal gravity coefficients, J2n, zonal winds, and axial moment of inertia10

(MoI) by constructing models for the interiors of giant planets. We employ the nonperturbative11

concentric Maclaurin spheroid (CMS) method to construct both physical (realistic equation of state12

and barotropes) and abstract (small number of constant-density spheroids) interior models. We find13

that accurate gravity measurements of Jupiter’s and Saturn’s J2, J4, and J6 by Juno and Cassini14

spacecrafts do not uniquely determine the MoI of either planet but do constrain it to better than15

1%. Zonal winds (or differential rotation, DR) then emerge as the leading source of uncertainty. For16

Saturn, they are predicted to decrease the MoI by 0.4% because they reach a depth of ∼9000 km17

while on Jupiter, they appear to reach only ∼3000 km. We thus predict DR to affect Jupiter’s MoI18

by only 0.01%, too small by one order of magnitude to be detectable by the Juno spacecraft. We19

find winds primarily affect the MoI indirectly via the gravity harmonic J6 while direct contributions20

are much smaller because the effects of pro- and retrograde winds cancel. DR contributes +6% and21

−0.8% to Saturn’s and Jupiter’s J6 value, respectively. This changes the J6 contribution that comes22

from the uniformly rotating bulk of the planet that correlates most strongly with the predicted MoI.23

With our physical models, we predict Jupiter’s MoI to be 0.26393±0.00001. For Saturn, we predict24

0.2181±0.0002, assuming a rotation period of 10:33:34 h that matches the observed polar radius.25

Keywords: giant planets, Jupiter, Saturn, interior models, gravity science26

1. INTRODUCTION27

The angular momentum of a giant planet must be accurately known to calculate the planet’s precession rate, which28

is the crucial quantity to determine whether it is in a spin-orbit resonance. Such resonances have been invoked, along29

with additional assumptions to explain the obliquities of Saturn, 27◦ (Saillenfest et al. 2021; Wisdom et al. 2022),30

Jupiter, 3◦ (Ward & Canup 2006), and Uranus, 98◦ (Saillenfest et al. 2022). The planetary spin angular momentum31

contributes 99% of the angular momenta of the Jovian or Saturnian systems, the rest coming from the most massive32

satellites. To high order, the total angular momentum of a planetary system is conserved over billions of years while33

the planet’s moment of inertia C changes (Helled 2012; Nettelmann et al. 2012a) due to secular cooling and other34

processes like helium rain (Wilson & Militzer 2012a) and core erosion (Wilson & Militzer 2012b), and satellite orbits35

exchange angular momentum with the planet through tidal interactions (Fuller et al. 2016).36

The space missions Juno (Bolton et al. 2017) and Cassini (Spilker 2019) have provided us with a wealth of new37

data for Jupiter and Saturn. Multiple close flybys have mapped the gravity fields of these planets with a high level of38

precision (Durante et al. 2020; Iess et al. 2019) that far exceeds the earlier measurements by the Pioneer and Voyager39

missions (Campbell & Synnott 1985; Campbell & Anderson 1989). The new measurements have also led to a revision40

of the assumptions that are employed when interior models are constructed. Traditionally, the interiors of Saturn and41

Jupiter were represented by three layer models (Guillot et al. 2004; Saumon & Guillot 2004a; Nettelmann et al. 2012b;42

Hubbard & Militzer 2016a) that start with an outer layer that is predominantly composed of molecular hydrogen, a43
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deeper layer where hydrogen is metallic, and compact core that is composed of up to 100% of elements heavier than44

helium. There was sufficient flexibility in choosing the layer thicknesses and the mass fractions of helium, Y , and45

heavier elements, Z, to match the earlier spacecraft measurements.46

Still, the predictions from various types of three layer models were not always found to be in perfect agreement47

for two main reasons. Early interior models relied on the theory of figures (ToF) (Zharkov & Trubitsyn 1978), a48

perturbative approach, to capture the gravitational and rotational effects in a planet’s interior. Most calculations49

employed the third and fourth order version of the ToF but this technique has recently been extended to seventh50

order (Nettelmann et al. 2021). With the development of the concentric Maclaurin spheroid method (CMS), it became51

possible to construct giant planet interior models nonperturbatively (Hubbard 2013).52

The second source of uncertainty is the equation of state (EOS) of hydrogen-helium mixtures at high pressure (Vor-53

berger et al. 2007; Morales et al. 2010). While shock wave measurements (Zeldovich & Raizer 1968) now routinely54

reach the relevant regime of megabar pressures (Da Silva et al. 1997; Collins et al. 1998; Knudson et al. 2001; Celliers55

et al. 2010), the temperatures in these experiments are much higher than those in giant planet interiors (Militzer et al.56

2016). For this reason, interior models invoke theoretical methods (Saumon et al. 1995a) and ab initio simulations57

(Militzer et al. 2008; Nettelmann et al. 2008) to construct an EOS for hydrogen-helium mixtures and then add heavy58

elements within the linear mixing approximation (Soubiran & Militzer 2015; Ni 2018). A direct experimental confir-59

mation of the prediction from ab initio simulations of hydrogen-helium mixtures under giant planet interior conditions60

would be highly valuable even though simulation results for other materials were found to be in good agreement with61

shock experiments (French et al. 2009; Millot et al. 2020).62

For Jupiter, the Juno spacecraft obtained smaller magnitudes for the harmonics J4 and J6 than interior models had63

predicted (Hubbard & Militzer 2016a). Matching and interpreting these measurements has led authors to introduce64

a number of novel assumptions into interior models. One can adopt a 1-bar temperature that is higher (Wahl et al.65

2017b; Miguel et al. 2022) than the Galileo value of 166.1 K or invoke a less-than-protosolar abundance of heavy Z66

elements (Hubbard & Militzer 2016a; Nettelmann 2017; Wahl et al. 2017b). Both modifications reduce the density of67

the molecular outer layer, which makes it easier to match J4 and J6. Wahl et al. (2017b) introduced the concept of a68

dilute core, which partially addressed the J4-J6 challenge. Debras & Chabrier (2019) adopted the dilute core concept69

and then decreased the heavy Z element fraction at an intermediate layer. Most recently Militzer et al. (2022) matched70

all observed Jn values exactly by simultaneously optimizing parameters of the dilute core and models for the zonal71

winds.72

The high-precision values from the Juno and Cassini missions for Jupiter’s and Saturn’s zonal gravitational har-73

monics, Jn, provide important constraints on the interior mass distributions and thereby also constrain the moment74

of inertia as we will demonstrate in this article. A different constraint, the value of the spin angular momentum,75

J , comes from measurement of forced precession of the planet’s rotation axis. As the precession periods are very76

long, respectively ∼0.5×106 years for Jupiter and ∼2×106 years for Saturn (Ward & Canup 2006), high-precision77

pole-position measurements over a long time baseline are necessary to measure J to better than 1%. In principle,78

if the planet rotates uniformly and its spin rate, ω, is known, one can obtain the axial moment of inertia, C, via79

C = J /ω, which would provide an independent constraint on the interior mass distribution.80

For convenience, a planet’s momentum of inertia is typically reported in normalized form, MoI≡ C/MR2
e. While81

we normalize by the planet’s mass, M , and the present-day equatorial radius, Re at a pressure of 1 bar, one should82

note that other authors have used the volumetric radius (Ni 2018) or made the radius age-dependent (Helled 2012).83

In this paper, we systematically investigate how much MoI can vary for models which have exact fixed values of ω and84

zonal gravitational harmonics Jn up to some limiting degree n, and thus illustrate the role of MoI as an independent85

constraint. Note that the approximate Radau-Darwin formula (e.g., Bourda & Capitaine (2004)), which posits a86

unique relation between J2, ω, and MoI, is too inaccurate to be relevant to this investigation because Jupiter and87

Saturn rotate rapidly and the density varies significantly throughout their interiors (Wahl et al. 2021). When we88

construct models for giant planet interiors, we assume hydrostatic equilibrium and that the density increases with89

pressure. Since this concentrates mass in the planet’s center, we expect the inferred MoI to be substantially less than90

2/5, the value for a single constant-density Maclaurin spheroid independent of its rotation rate.91

The article is organized as follows. In Sec. 2, we show how a planet’s moment of inertia and angular momentum92

are calculated with the CMS method. We introduce physical and abstract models for giant planet interiors. We93

also explain that differential rotation (DR) in a planet has direct and indirect effects. The direct effect is introduced94

when the observed zonal winds, that move at different angular velocities, are projected into the interior and thereby95
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cause a planet’s angular momentum to deviate from the value of an object that rotates uniformly. However, the96

zonal winds also make dynamical contributions to a planet’s gravitational harmonics. They thereby reduce the static97

contributions slightly that come from the mass distribution in the planet’s interior when models are constructed to98

match a spacecraft’s gravity measurements. This change in the mass distribution also affects the resulting moment of99

inertia, which we call the indirect effect of DR.100

In Sec. 3, we first discuss our predictions for Saturn’s momentum of inertia and illustrate how sensitively it depends101

on the gravity harmonics J4 and J6. We find that the dynamical contributions to J6 play a critical role. Then we derive102

the angular momentum for arbitrary giant planets, for which the mass, equatorial radius, J2, and rotational period103

have been measured. We present results from different models for Jupiter’s interior, which includes CMS calculations104

that we performed for Jupiter models of other authors. Finally we compare our momentum of inertia values with105

earlier predictions in the literature before we conclude in Sec. 4.106

2. METHODS107

The normalized moment of inertia of an axially symmetric body can be derived from this integral over all fluid108

parcels as function of radius and µ = cos(θ) with θ being the colatitude,109

MoI ≡ C

MR2
e

=
2π

MR2
e

+1∫
−1

dµ

R(µ)∫
0

dr r2 l2 ρ(r, µ) , (1)

where l = r
√
1− µ2 is the distance from the axis of rotation and R(µ) marks the outer boundary of the planet. In110

the CMS method, one represents the mass in the planet’s interior by a series of nested constant-density spheroids each111

adding a small density contribution, δj , that lets the combined density increase with depth. After carrying out the112

radius integration, the MoI can be written as a sum over spheroids,113

C

MR2
e

=
2π

5MR2
e

∑
j

δj

+1∫
−1

dµ r5j (µ)
[
1− µ2

]
, (2)

where rj(µ) marks the outer boundary of the spheroid with index j. For a uniformly rotating (UR) body, the normalized114

spin angular momentum is given by J UR
norm =

√
qrotC/MR2

e with qrot being the dimensionless rotational parameter,115

qrot =
ω2R3

e

GM
, (3)

that compares the magnitudes of the centrifugal and gravitational potentials. If the body is rotating differentially, one116

needs to revert to the 2D integral,117

J DR
norm =

2π
√
qrot

MR2
e

+1∫
−1

dµ

R(µ)∫
0

dr r2 l2 ρ(r, µ)
v(r, µ)

v̄(l)
, (4)

where v(r, µ) is the fluid velocity and v̄ is that of the uniformly rotating background, v̄ = l ∗ ω. For convenience, one118

may choose to define an effective or average moment of inertia for a differentially rotating body,119

C̄DR/MR2
e = J DR

norm/
√
qrot , (5)

and compare it with predictions of Eq. 2. We call this difference the direct effect of DR on the predicted MoI, to120

be compared with the indirect effect that emerged because DR affects the interior density structure and thus the121

calculated gravity harmonics, in particular J6. In Tab. 1, we quantify the indirect DR effect by comparing the MoI122

values, C(DR) and C(UR), derived from Eq. 2 for a model that invokes DR effects and a model that does not when123

they both match the observed Jn.124

We find that the magnitude of the direct DR effect is much smaller than the indirect one (Tab. 1) because contri-125

butions from pro- and retrograde jets to the direct effect partially cancel. Direct DR effects increase Jupiter’s MoI126

by 0.0015% because the prograde winds in the equatorial region dominate. For Saturn, we find that the retrograde127

winds at a latitude of ∼35◦ dominate over the prograde equatorial jet, which implies that direct DR effects lower the128

planet’s angular momentum by −0.13%.129
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2.1. CMS Technique130

The spheroid surfaces rj(µ) are contours of constant pressure, temperature, composition, and potential. The po-131

tential combines centrifugal and gravitational contributions, Q + V . According to Zharkov & Trubitsyn (1978), the132

gravitational potential can be expanded in the following form,133

V (r, µ) =
GM

r

[
1−

∞∑
n=1

(Re/r)
2n

J2nP2n(µ)

]
, (6)

where Pn are the Legendre polynomials of order n and the Jn are the gravity harmonics given by134

Jn = − 2π

MRn
e

+1∫
−1

dµ

R(µ)∫
0

dr rn+2 Pn(µ) ρ(r, µ) . (7)

According to Hubbard (2013), the gravitational potential Vj of a point (rj , µ) on spheroid j is decomposed into135

contributions from interior spheroids (j = i . . . N − 1),136

V
(int)
i (ri, µ) = −GM

ri

N−1∑
j=i

∞∑
n=0

Jj,n

(
Re

ri

)n

Pn(µ) (8)

and exterior spheroids (j = 0 . . . i− 1),137

V
(ext)
i (ri, µ) = −GM

ri

i−1∑
j=0

[
J ′′
j,0

(
ri
Re

)3

+

∞∑
n=0

J ′
j,n

(
ri
Re

)n+1

Pn(µ)

]
. (9)

Following the derivation in Hubbard (2013), we define the interior harmonics138

Ji,n = − 1

n+ 3

2π

M
δi

+1∫
−1

dµ Pn(µ)

(
ri
Re

)n+3

(10)

and the exterior harmonics139

J ′
i,n = − 1

2− n

2π

M
δi

+1∫
−1

dµPn(µ)

(
ri
Re

)2−n

(11)

with a special case for n = 2,140

J ′
i,n = −2π

M
δi

+1∫
−1

dµPn(µ) log

(
ri
Re

)
(12)

and finally,141

J ′′
i,0 =

2πδia
3

3M
, (13)

where M is the total mass of the planet. One should note that during the numerical evaluation of these expressions, it142

is recommended to work with harmonics that have been renormalized by the powers of the equatorial spheroid radii,143

λi. These equatorial points (rj = λj , µ = 0) serve as anchors for all spheroid shapes. This is where the reference value144

of the potential is computed that one uses to adjust the spheroid shape until a self-consistent solution emerges for145

which all spheroids are equipotential surfaces.146

It is important to choose the λi grid points wisely in order to minimize the discretization error that is in-147

herent to the CMS approach. We recommended choosing them so that a logarithmic grid in density emerges,148

ρ(λi+1)/ρ(λi)=constant (Militzer et al. 2019). This grid choice allows us to obtain converged results when we construct149

our physical models with NS = 2048 spheroids.150

In addition to gravity, one needs to consider the centrifugal potential, which takes the following simple form for a151

uniformly rotating body, Q(l) = 1
2 l

2ω2. We employ this formula when we construct models for Jupiter’s interior and152
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then introduce DR effects by solving the thermal wind equation (Kaspi et al. 2016) to derive the density perturbation,153

ρ′,154

∂ρ′

∂s
=

2ω

g

∂

∂z
[ρu] , (14)

for a rotating, oblate planet (Cao & Stevenson 2017) in geostrophic balance. z is the vertical coordinate that is parallel155

to the axis of rotation. ρ is static background density that we derive with the CMS method. u is the differential flow156

velocity with respect to the uniform rotation rate, ω. g is the acceleration that we derive from the gravitational-157

centrifugal potential, V +Q, in our CMS calculations. s is the distance from the equatorial plane along a path on an158

equipotential. We represent the flow field u as a product of the surface winds, us, from Tollefson et al. (2017) and159

a decay function of sin2(x) form from Militzer et al. (2019). This function facilitates a rather sharp drop similar to160

functions employed in Galanti & Kaspi (2020) and Dietrich et al. (2021).161

Since the winds on Saturn reach much deeper, we treat them nonperturbatively by introducing DR on cylinders162

directly into the CMS calculations by modifying the centrifugal potential,163

Q(l) =

∫ l

0

dl′ l′ ω(l′)2 (15)

Since we assume potential theory, a cylinder’s angular velocity, ω(l), cannot decay with depth, which means we are164

only able to include the prograde equatorial jet and first retrograde jet at ∼35◦ that were characterized by tracking165

the cloud motion in Saturn’s visible atmosphere (Sanchez-Lavega et al. 2000; Garćıa-Melendo et al. 2011).166

2.2. Physical Interior Models167

In Fig. 1, we illustrate our physical interior models for Jupiter and Saturn. Since planets cool by convection, we168

assume most layers in their interiors are isentropic and of constant composition. We represent their outer envelope169

where hydrogen is molecular by the parameters (Smol, Ỹmol, Zmol) for entropy, helium mass fraction and the fraction170

of heavy elements. We define Ỹ ≡ Y/(X + Y ) with X and Y being the mass fractions of hydrogen and helium so that171

X + Y + Z = 1. We require Zmol to be at least protosolar, ZPS = 1.53% (Lodders 2010). The entropy is chosen to172

match the temperature at 1 bar: 142.7 K for Saturn (Lindal et al. 1981) and 166.1 K for Jupiter (Seiff et al. 1997) that173

was measured in situ by the Galileo entry probe. For Jupiter, we also consider an alternate, slightly higher temperature174

of 170 K from a recent reassessment of the Voyager radio occultation measurements (Gupta et al. 2022).175

To construct EOSs for models in this article, we start from the ab initio EOS that Militzer & Hubbard (2013)176

computed for one hydrogen-helium mixing ratio. With these calculations, absolute entropies (Militzer 2013) were177

derived that implicitly set the temperature profiles in our models. We use our helium EOS from Militzer (2006, 2009)178

to perturb helium fraction in our H-He EOS as we detailed in Hubbard & Militzer (2016b). We also follow this article179

when we introduce heavily elements into our models. Their detailed composition is not important as long as they are180

substantially more dense than hydrogen and helium. Ice, rocky materials and iron are all sufficiently dense so that they181

add mass but do not increase the volume of the mixture too much. At low pressure where the ab initio simulations do182

not work, we revert back to the semi-analytical EOS by Saumon et al. (1995b).183

When hydrogen assumes an atomic/metallic state at approximately 80–100 GPa (Morales et al. 2009), helium184

remains an insulator and the two fluids are predicted to become immiscible (Stevenson & Salpeter 1977; Brygoo185

et al. 2021). There is indeed good evidence that helium rain has occurred in Jupiter because the Galileo entry probe186

measured a helium mass fraction of Ỹ = 0.238± 0.005 (von Zahn et al. 1998) that is well below the protosolar value187

of 0.2777 (Lodders 2010). Furthermore, neon in Jupiter’s atmosphere was measured to be nine-fold depleted relative188

to solar, and this can be attributed to efficient dissolution in helium droplets (Roulston & Stevenson 1995; Wilson &189

Militzer 2010). So for our Jupiter models, we adopt the value from the Galileo entry probe for Ỹmol and for Saturn, we190

make it a free parameter but constrain it to be no higher than the protosolar value because we have no information191

on how much helium rain has occurred in this planet.192

For both planets, we chose values for the beginning and ending pressures of the helium rain layer that are compatible193

with the immiscibility region that Morales et al. (2013) derived with ab initio computer simulations (see Militzer et al.194

(2019) for details). Across this layer, we assume (S, Ỹ , Z) vary gradually with increasing pressure until they reach195

the values of the metallic layer (Smet, Ỹmet, Zmet) where they are again constant since we assume this layer to be196

homogeneous and convective. Ỹmet is adjusted iteratively so that the planet as a whole assumes a protosolar helium197

abundance. This also assures Ỹmet > Ỹmol. We prevent the heavy element abundance from decreasing with depth,198
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Jupiter Saturn

Figure 1. Models of Jupiter and Saturn based on CMS calculations that match the gravity measurements of both planets. The
zonal winds on Saturn are predicted to reach a depth of ∼9000 km, involving ∼7% of the planet’s mass. On Jupiter, they are
predicted to reach ∼3000 km and thus involve only 1% of the planet’s mass. Because Jupiter is more massive, the pressure rises
more rapidly with depth. Therefore the helium rain layer, predicted to start approximately at 80–100 GPa, is located closer to
the surface. While the gravity measurements for Jupiter imply that the planet has a dilute core, the state of Saturn’s core is
less certain. Here we show a model with a compact core constructed to match the gravity measurements.

Zmet ≥ Zmol. Every layer is either homogeneous and convective or Ledoux stable (Ledoux 1947). This sets our models199

apart from those constructed by Debras et al. (2021) who introduced a layer where Z decreases with depth in order200

to match Jupiter’s J4. Instead our Jupiter models all have a dilute core with Z ≈ 0.18 (see Fig. 1) because this key201

restriction allows us to match the entire set of gravity measurements of the Juno spacecraft under one set of physical202

assumptions (Militzer et al. 2022).203

For our Monte Carlo calculations of Jupiter’s interior, we vary the beginning and end pressure of the helium rain204

layer but apply constraints so that they remain compatible with H-He phase diagram as derived by Morales et al.205

(2009). We also vary a parameter α that controls the shape of the helium profile in this layer, as we explain in Militzer206

et al. (2022). During the Monte Carlo calculations, we also vary the beginning and end pressure of the core transition207

layer, which we assume to be stably stratified since the abundance of heavy elements increases from Zmol to Zmet in208

this layer. We also allow Zmol and Zmet to vary as long as they meet the constraint we discussed in the previous209

paragraph. More details of our Monte Carlo approach are given in Militzer et al. (2022).210

For our Saturn models, we assume a traditional compact core that is composed up to 100% of heavy elements because211

this assumption was sufficient to match the gravity measurements by the spacecraft (Iess et al. 2019), but there are212

alternate core models constructed to match ring seismological data (Mankovich & Fuller 2021).213

2.3. Abstract N Spheroid Models214

In the previous section, we described physical interior models in hydrostatic equilibrium that rely on a realistic EOS215

for H-He mixtures. To explore more general behavior, we now investigate simplified models with NS spheroids. We216
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Jupiter Saturn

GM [1016 m3s−2] 12.66865341† 3.7931208

Equatorial radius, Re, at 1 bar [km] 71492 60268

Measured J2 × 106 14696.5063 ± 0.0006† 16324.108 ± 0.028∗

Measured J4 × 106 –586.6085 ± 0.0008† –939.169 ± 0.037∗

Measured J6 × 106 34.2007 ± 0.0022† 86.874 ± 0.087∗

Period of rotation 9:55:29.711 h 10:33:34 h ± 55 s

Inferred qrot, Eq. (3) 0.08919543238 0.1576653506

Calculated ratio of volumetric and equatorial radii, Rm/Re 0.97764461 0.96500505

Calculated MoI, C/MR2
e, Eq. (2) 0.26393 ± 0.00001 0.2181 ± 0.0002

Calculated angular momentum, Jnorm, Eq. (4) 0.078826 ± 0.000003 0.08655 ± 0.00008

Direct DR effect, (C̄DR − C)/C, Eqs. (2,5) +1.5×10−5 –1.3×10−3

Indirect DR effect, (C(DR) − C(UR))/C(DR), Eq. (2) –1×10−4 –3×10−3

Table 1. Parameters for Jupiter and Saturn that we used for this article. ∗Measurements from Iess et al. (2019) but converted
to our 1 bar radius. †value and 1-σ uncertainty from Durante et al. (2020).

still require each spheroid surface to be an equipotential but spheroid densities, ρi, are arbitrary as long as the densities217

monotonically increase toward the planet’s interior, ρi+1 ≥ ρi. We can set the density of the outermost spheroid to218

zero, ρ0 = 0, because in realistic interior models, the density of the outermost layer is typically much lower than that219

of deeper layers. (We also construct models in which ρ0 is a free parameter, but they behave similarly, and in the limit220

of large NS , the difference becomes negligible.)221

We initialize the equatorial radii of all spheroids, starting from i = 0 . . . NS−1, to fall in a linear grid, λi = 1− i/NS .222

While we keep the outermost spheroid anchored at λ0 = 1, we repeatedly scale all interior λi>0 points uniformly to223

obtain a model that matches the planet’s mass and J2 exactly. We add a penalty term to the Monte Carlo (MC) cost224

function if λi > λ0.225

Since matching M and J2 requires two free parameters, we also scale all density values, ρi, uniformly. So after226

every update of the spheroid shapes, we employ a Newton-Raphson step to scale ρi and λi grids simultaneously. We227

also institute a maximum density of 10 PU (planetary unit of density, M/R3
e) to prevent pathological situations in228

which the radius of the innermost spheroid becomes very small while its density becomes extremely large. Movshovitz229

et al. (2020) and Neuenschwander et al. (2021) also introduced upper limits on density. We consider 10 PU to be a230

reasonable choice because for Jupiter, it corresponds to a density of 52 g cm−3, which exceeds the density of iron that231

is ∼27 g cm−3 at Jupiter’s core conditions (Wilson & Militzer 2014). The described set of assumptions lead to a stable232

procedure with NS–1 free input parameters (ρi>0) that is amendable for MC sampling.233

Since we do not employ a physical EOS or make specific assumptions about the planet’s composition or temperature234

profile, our abstract models share similarities with the empirical models by Helled et al. (2009) and Neuenschwander235

et al. (2021) or the composition-free models by Movshovitz et al. (2020) who represented the Saturn interior density236

profile by three quadratic functions before conducting MC calculations to match the Cassini gravity measurements.237

3. RESULTS238

3.1. Saturn239

In Fig. 2, we show MoI values computed for the physical models of Saturn’s interior in Fig. 1, as well as for the240

abstract NS spheroid models. The dominant source of uncertainty in the computed MoI is the planet’s period of241

rotation, which cannot be derived from the planet’s virtually axisymmetric magnetic field. This is not the case for242

Jupiter, whose rotation period is known to a fraction of a second (see Tab. 1). Without any constraints on the rotation243

period, the predictions for Saturn’s MoI vary by ∼2%. Still all values predict that Saturn is not currently in a spin-orbit244

resonance with Neptune today (Wisdom et al. 2022). For all rotation periods shown in Fig. 2, we can construct interior245

models that match the entire set of gravity coefficients that the Cassini spacecraft measured during its ultimate set246

of orbits (Iess et al. 2019), so gravity measurements alone are insufficient to constrain the rotation period. Only if247

we match the planet’s polar radius as measured by the Voyager spacecraft using radio occultation, the now-preferred248

period of 10:33:34 h ± 55 s emerges (Militzer et al. 2019). This rotation period is in remarkably good agreement with249

the value of 10:33:38 h+112s
−89s inferred from waves observed in Saturn’s rings (Mankovich et al. 2019).250
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Figure 2. MoI of Saturn computed for different rotation periods that have been assumed in the literature. The physical model
with differential rotation (DR) matches the measured gravity harmonics J2-J12 while models without DR can only match values
up to J6. We prefer the period of 10:33:34 hr ± 55 s because it allows models with DR to match the Voyager measurements
of the planet’s polar radius. Under these assumptions, we predict Saturn’s MoI = 0.2181± 0.0002. With a low-order theory of
figures, Helled et al. (2009) predicted Saturn’s MoI to be 2% larger (yellow squares). The green band illustrates the range of
predictions with four-spheroid calculations that were reported by Wisdom et al. (2022).

Once a rotation period has been selected, the remaining uncertainty is dominated by effects of differential rotation251

(DR), which amount to about 0.4%. Without DR effects, we are only able to match the gravity harmonics J2–J6,252

and already matching J6 requires us to introduce one additional adjustable parameter, so we add an artificial density253

jump (Iess et al. 2019). The comparison of predictions from model with and without DR in Fig. 4 illustrates that DR254

effects are much more important for Saturn than for Jupiter. When we include DR effects in our Saturn models, we255

are able to match the entire set of gravity harmonics J2–J12 without an artificial density jump. We find that resulting256

MoI drops 0.4% below predictions from models that match J2–J6 without DR.257

To better understand this drop, we constructed MC ensembles of abstract models of Saturn’s interior that match258

qrot and J2 without invoking DR. In Fig. 3c, we plot the posterior distribution of the computed MoI in J4-J6 space.259

We also show the Cassini measurements (Iess et al. 2019) and the model from Fig. 4 without DR nor artificial density260

jump, matching the observed J2 and J4. We estimate DR effects increase Saturn’s J6 from ∼81×10−6 to the observed261

value of 86.340 ×10−6. Fig. 3c shows that the Cassini measurements place Saturn in a regime where an increase in J6262

(or in J4) leads to an increase in the MoI: ∂MoI
∂J int

6
> 0.263

At the same time, models without DR in Fig. 2 predict a larger MoI than models with DR. This lets us conclude264

that when models with DR are constructed to match the Cassini measurements, DR effects reduce the contribution265

to J6 that comes from the uniformly rotating bulk of the interior, J int
6 . So when models with and without DR are266
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Figure 3. Posterior distributions of Monte Carlo ensembles of abstract models for Jupiter’s and Saturn’s interior without DR
that match the observed values for qrot and J2. The blue symbols represent measurements of Juno and Cassini spacecraft while
the red symbols show predictions from models without DR effects. In panel (a), we compare ensembles of models with various
numbers of spheroids. Counterintuitively, models with fewer spheroids tend to show a wider range of J4 and J6 values (see
text). In panels (b) and (c), the background color, the color bar and the contour lines represent the average MoI as function
of J4 and J6. NS = 20 spheroids were employed. DR effects alter Saturn’s MoI significantly while they are less important for
Jupiter. Jupiter’s MoI decreases with rising J6 while it is almost independent of J4. Conversely, Saturn’s MoI strongly depends
on J4 but still increases with rising J6.
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Figure 4. The even gravitational moments Jn of Jupiter and Saturn versus degree n. All moments have been scaled by
powers of the rotational parameter, qrot , because the ratio Jn/q

n/2
rot is approximately constant according to the theory of figures

(ToF) (Zharkov & Trubitsyn 1978). The variation of the ratios with the order n is due to the contribution of higher-order
terms in the ToF, captured to high precision in the nonperturbative CMS method. The figure also illustrates that the effects
of differential rotation are much stronger for Saturn (blue shaded area) than for Jupiter because Saturn’s winds extend to a
greater depth of ∼9000 km (Iess et al. 2018). Saturn models with differential rotation fit the observed moments up to J12 while
uniform rotation models can only fit coefficients up to J4, or up to J6 if a density jump is included. Here we compare the Juno
measurements with a uniform rotation model for Jupiter’s interior while the model with differential rotation in Militzer et al.
(2022) matches the entire set of gravity coefficients.

compared, both matching the spacecraft data, models with DR predict a smaller MoI because their J int
6 is reduced by267

contributions to J6 from DR. It is primarily this change to the J6 term that affects the MoI while the DR contributions268

to J2 and J4 are too small to matter. On the other hand, DR effects dominate the higher order Jn starting with J8269

(see Fig. 4) but their values are controlled by the outer layers of the planet (Guillot 2005; Nettelmann et al. 2013;270

Fortney et al. 2016; Militzer et al. 2016) where the density is comparatively low, and therefore they do not contribute271

much to the MoI. We conclude that DR effects couple to the MoI mostly via J6.272

While the models in Fig. 3 only match J2, we compare MC ensembles of Saturn models in Fig. 5 that either match273

J2 and J4 or all three J2–J6. The posterior distribution of MoI value narrows substantially with every additional274

constraint.275

Abstract models that match J2–J6 yield a MoI range from ∼0.2180 until a sharp drop off at 0.2189. Our physical276

models yield a MoI value of 0.2181 with a 1-σ error bar of 0.0002. Broadly speaking the predictions from the two277

ensembles are compatible. However, with increasing spheroid number, our abstract models cluster around the most278

likely value of 0.2188, which is a bit higher than our physical models predict. This difference is a consequence of the279
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Figure 5. Probability density distributions of Jupiter’s and Saturn’s MoI values. The top panel illustrates how the range of
likely MoI values shrinks as models with eight constant-density spheroids are required to first match only Jupiter’s J2 value,
then to match J2 and J4, then to reproduce the measured values for J2 through J6. The second panel shows that the range
of likely MoI values shrinks further when this calculation is instead performed with 50 constant-density spheroids (see Fig. 3).
The third panel shows the same trend in four-spheroid models of Saturn. The lowest panel shows predictions from models that
match Saturn’s J2 through J6. As the number of spheroids is increased, models tend to cluster in a narrower MoI interval. With
50 spheroid models that match J2 through J6, we obtained a range from 0.26393–0.26398 for Jupiter’s MoI. (Between 5 × 105

and 6× 107 models were constructed to compute every individual MoI histogram.)
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Figure 6. Panels a), b), and c) show the MoI of hypothetical planets with prescribed qrot and J2 values. The solid lines
show the ensemble average of abstract models with 50 constant-density spheroids. The predictions from physical giant interior
models that match the spacecraft measurements of Jupiter and Saturn are shown for comparison. The dashed lines in panel
b) are the prediction from the Radau-Darwin Eq. 16 that becomes exact in the limit of small qrot and large J2. In this limit,
the 50-spheroid models are forced to approach the uniform-density limit of MoI= 2

5
. One can also approach this limit with

two-spheroid calculations. So in panel d), we show how the volume fraction of the inner spheroid changes as a function of qrot.
As the fraction approaches unity, the choices for qrot and J2 imply a constant planet.

way the two ensembles are constructed. In one case, we apply a number of physical assumptions. In the other, we do280

not and let the Monte Carlo procedure gravitate towards the most likely parameter space as long as the spacecraft281

measurements are reproduced. So one may expect to see small deviations in the predictions of the two ensembles.282

3.2. Giant planets in general283

The results in Fig. 5 show that the MoI of a giant planet can already be constrained reasonably well even if only qrot284

and J2 are known. We therefore derive the MoI for a set of hypothetical giant planets by performing MC calculations285

with NS = 50 spheroids on a grid of qrot and J2 points, which will help us to understand why Jupiter’s and Saturn’s286

MoI differ by ∼20%.287

The ensemble averages of the computed MoI are shown in Fig. 6. One finds in Fig. 6a that for a given qrot, the288

MoI rises rapidly with increasing J2. To first approximation, J2 is a measure of the planet’s oblateness. So if J2 is289

increased, while the equatorial radius and the rotation period are kept constant, more mass is moved towards the290

equatorial region, increasing the MoI. In Fig. 6b, we also show the predictions of the Radau-Darwin approximation,291

MoI =
2

3

(
1− 2

5

√
η − 1

)
with η =

5qrot
3J2 + qrot

(16)

While there exist slightly different formulations of this approximation (Zharkov & Trubitsyn 1978), they all become292

exact in the limit of small qrot and large J2. In this limit, the planet’s density becomes more and more uniform293
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throughout its interior. Eventually the MoI approaches 2
5 , the value for a uniform-density fluid planet (Maclaurin294

spheroid) regardless of rotation rate. The 2
5 value cannot be exceeded unless one permits the density in the interior to295

be less than that of the exterior, which we exclude from consideration.296

The uniform-density limit is also approached by models that have just two spheroids. While we fix the parameters297

of the outer spheroid, ρ0 = 0 and λ0 = 1, the two parameters of the inner spheroids, ρ1 ≥ 0 and λ1 ≤ 1, are just298

sufficient to match a pair of prescribed qrot and J2 values. In Fig. 6d, we plot the volume fraction of the inner spheroid299

as function of qrot. When this fraction approaches 1 for small qrot, the density of the planet becomes uniform. For a300

given J2, this occurs at the same qrot value that leads to a MoI value of 2
5 in Fig. 6b. The two-spheroid calculations in301

Fig. 6d also confirm the trends that we see in the NS spheroid calculations in the other figure panels: With increasing302

qrot, more and more mass needs to be concentrated in the planet’s center to satisfy the J2 constraint. This leads to a303

decrease in the MoI if qrot is increased for a given J2, explaining the trends in Fig. 6b.304

Finally we performed calculations for our two-spheroid models for Saturn’s and Jupiter’s qrot and J2 values. While305

such models are crude, they show that the volume fraction of the inner spheroid is ∼54% for Jupiter and only ∼42%306

for Saturn. This implies that a higher fraction of Saturn’s mass is concentrated near the the center, consistent with the307

fact that typical Jupiter models have a dilute core, while Saturn models matching the gravity measurements typically308

do not require one.309

3.3. Jupiter310

In Fig. 3a, we compare the posterior distributions of abstract Jupiter models with different numbers of spheroids.311

All models were constructed to match Jupiter mass, equatorial radius, and J2 exactly. Models with fewer spheroids312

tend to show a wider range of J4 and J6 values, which is counterintuitive because, e.g., the entire space of 10 spheroid313

models is included in that of the 20 spheroid models. (In an 20 spheroid model, one only needs to set ρ2i = ρ2i+1 to314

obtain a valid 10 spheroid model.) However, the available space of 20 spheroid models is much bigger and in most315

models, the magnitude of the density steps, ρ2i ≤ ρ2i+1, is smaller than that between two densities in a 10 spheroid316

model. In most 20 spheroid models, the density varies slightly more gradually than in the coarser 10 spheroid models.317

As a result, a representative set of 20 spheroid models occupies a smaller area in J4-J6 space than a set of 10 spheroid318

models. Despite this reduction with increasing NS , the range of every model ensemble includes the J4 and J6 values319

from the Juno measurements (Durante et al. 2020) as well as the predictions from the static gravity terms (no DR)320

according to the dilute core models from Militzer et al. (2022). We will refer to them as five layer models throughout321

this article.322

In Fig. 3b, we compare the average MoI as function of J4 and J6. In general, small J6 and J4, that are less negative,323

lead to larger MoI values. One also notices that as J6 is increased for a given J4, the MoI goes through a maximum324

and the Juno measurements place Jupiter in the regime where ∂MoI
∂J int

6
< 0 while the opposite is true for Saturn. From325

the shape of contour lines, we can infer that Jupiter’s MoI is almost independent of J4.326

The five layer models from Militzer et al. (2022) predict DR contributions to Jupiter’s J6 to be negative: –0.27327

×10−6 or –0.8%. They are much smaller in magnitude than for Saturn (it was +6%) and have the opposite sign.328

However, since ∂MoI
∂J int

6
also has the opposite sign, we are again in a situation where models matching the gravity data329

with DR effects predict a smaller MoI than models without DR. The magnitude of the MoI difference between the two330

types of models is, at –0.01%, much smaller for Jupiter while it was –0.4% for Saturn.331

While a –0.01% correction was derived from our more recent five layer models (Militzer et al. 2022), one may also332

ask whether the DR effect could make a larger contribution to J6. Our preliminary Jupiter model (Hubbard & Militzer333

2016b), put together before Juno data became available, differs in J6 by –0.8 ×10−6 from the now-available gravity334

data. Even if such a large discrepancy came from DR effects, the MoI would only decrease by –0.04%, still smaller335

than the 0.1% precision that Juno is expected to ultimately achieve for the MoI measurements.336

In Fig. 7, we compare the MoI of two and three layer models for Jupiter’s interior (Saumon & Guillot 2004b; Guillot337

et al. 2004; Militzer et al. 2008) that are based on a physical EOS for the hydrogen-helium mixture but do not contain338

sufficient flexibility to match all observations. The predicted MoI values range from 0.26385–0.26400. In panel 7b, the339

temperature of Jupiter’s interior was increased by raising the 1 bar temperature step by step from the value of the340

Galileo entry probe, 166.1 K, up to the extreme value of 185 K (Miguel et al. 2022). Raising 1 bar temperature lowers341

the density of the hydrogen-helium mixture, which enables one to add more heavy elements and thereby produce342

models that have at least a protosolar heavy element abundance, ZPS = 1.53%. An increase of 10 K allows one to343

approximately add one ZPS worth of heavy elements to an existing model. Still most models require the transition344
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Figure 7. Predictions from two and three layer models for Jupiter’s interior that were constructed under different assumptions
and match J2 exactly. Colors label models consistently across all panels but not all curves are shown in every panel for clarity.
The numbers specify the assumed transition pressure in GPa between molecular and metallic layers so that models can be traced
across different panels. Panel (b) compare the abundance of heavy elements in the outer molecular layer, Z1, with the value
of the protosolar nebula, 1.53% (Lodders 2010). No winds were included except for the last models shown in light blue color.
Only the brown curves refer to models with a compact core (6 Earth masses, rocky composition). The light green star shows
the preferred model from Hubbard & Militzer (2016b) while the pentagons and triangles indicate other compact core models
based on the EOSs by Militzer & Hubbard (2013) and Saumon et al. (1995a).

pressure to be 400 GPa or higher, which is not compatible with predictions for the metallization of hydrogen and for345

the hydrogen-helium immiscibility. Both are assumed to occur at approximately 80–100 GPa (Morales et al. 2010).346

Like the abstract models in Fig. 3, all physical models in Fig. 7 match J2 exactly but the fact that the equation347

of hydrostatic equilibrium is satisfied and that a physical EOS is employed means that J4 and J6 are now much348

more tightly correlated. While abstract models permitted a wide interval of J6 values from 32.5–36.5×10−6 for349

J4 = −587× 10−6, the more physical assumptions narrow this range to 34.2–34.5×10−6 in Fig. 7a.350

In Fig. 8, we compared the MoI from ensembles of interior+wind models that match the entire set of Juno’s even and351

odd gravity coefficients up to J10 (Durante et al. 2020). The posterior distribution of our five-layer reference ensemble352

is centered around the MoI value of 0.26393, which we consider to be our most plausible prediction for Jupiter’s MoI. If353

we increased the 1 bar temperature to 170 K, the resulting ensemble of MoI shifted to higher MoI values by a modest354

amount of ∼ 7 × 10−6. Slightly larger shifts were obtained when we changed the H-He EOS by reducing the density355

by 3% over a selected pressure interval (Militzer et al. 2022). The largest positive shift was obtained for a density356

reduction from 10–100 GPa and the largest negative was seen if the density was reduced from 50–100 GPa. Both MoI357

shifts were on the order to 10−5, which is why we report 0.26393±0.00001 for Jupiter’s MoI.358

In Fig. 9 we plot results from an ensemble of five layer models in order to show how the computed MoI correlates359

with different gravity harmonics. The MoI correlates positively with J2, negatively with J4, and not in a significant360
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Figure 8. Probability density distributions of normalized moments of inertia derived from different ensembles of interior
models matching even and odd gravity harmonics up to J10. All models include a dilute core and contributions from winds.
The red circles represent our reference models with five layers. When four layer models are constructed by removing either the
helium rain layer or the core transition layer, the MoI distribution hardly changes. If the 1-bar temperature is increased from
166.1 to 170 K, the MoI increases by only ∼10−5. Slightly larger changes are seen when the density of the hydrogen-helium
mixture is reduced over pressure intervals from 10–100 or from 50–500 GPa. In the caption, we specify the size of the ensemble
that was used for each histogram.

way with J6. (The correlations differ from predictions of two and three layer models in Fig. 7 because they only match361

the Jupiter’s mass and J2.) While the sign and slopes of the correlation of the MoI with J2 and J4 in Fig. 9 differ,362

one needs to consider that the sign and the magnitude of J2 and J4 differ as well (see Tab. 1). If one removes that363

dependence by evaluating J2
∂MoI
∂J2

= 10−7 and J4
∂MoI
∂J4

= 8×10−8, one finds the correlations between the MoI and both364

gravity coefficients are rather similar. The small magnitudes of ∼10−7 illustrates that an individual gravity coefficient365

would need to change a lot to alter the MoI significantly. Fig. 9 also shows that the posterior distributions of J2 and366

J4 are centered at the Juno gravity measurements as expected.367

In Fig. 10, we demonstrate fairly good agreement between the density profiles of our abstract and physical models368

for Jupiter’s interior. For a fractional radius of 0.2 and larger, the density of our physical five layer reference model369

falls within one standard deviation from the mean of the abstract ensemble that matches the planet’s mass, equatorial370

radius and the gravity coefficients J2 and J4. Both gravity coefficients do not constrain the core region very well and371

the abstract models can thus yield larger density values there. As expected, models that are only constrained by J2372

show a wider range of density values for given radius. Larger density values favored for r < 0.3 and smaller values373

for r > 0.4. Still for most radii, we find that the predictions from the J2 and J4 constrained models fall within one374

standard deviation of the J2 constrained models.375

In Tab. 2, we compare our result with different predictions for Jupiter’s MoI in the literature. Early determinations376

based on Pioneer and Voyager measurements by Hubbard & Marley (1989) and Wisdom (1996), who assumed uniform377

rotation, predicted Jupiter’s MoI to be 0.2640, which is very close to the 0.26393 ± 0.00001 value that we derived when378

we match the Juno measurements with models that included DR effects. This now preferred value is also included in379

the ranges from earlier CMS calculations by Hubbard & Militzer (2016b) and Wahl et al. (2017a). With a low-order380

ToF, Helled et al. (2011) predicted smaller MoI values. Nettelmann et al. (2012a) predicted a very wide range of381

MoI values because not all models were constructed to match J2, J4, and J6. Ni (2018) adopted the approach from382

Anderson & Schubert (2007) when he adjusted coefficients of a polynomial function for the density profile in Jupiter’s383

interior in order to match the first gravity measurements of the Juno spacecraft. With the theory of figures, he obtained384
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Figure 9. The two upper panels show posterior distributions of gravity harmonics J2 and J4 derived from an ensemble of five
layer models. The lower planels illustrate how the computed MoI correlates with J2, J4, and J6. The dashes lines indicate the
Juno gravity measurements from Durante et al. (2020) in Tab. 1.

Jupiter’s MoI=C/(MR2
e) Method and assumptions Reference

0.26401 Third-order ToF, Pioneer and Voyager data Hubbard & Marley (1989)

0.2640 Consistent level curve method, Pioneer and Voyager data Wisdom (1996)

0.2513 – 0.2528‡ ToF, Pioneer and Voyager data Helled et al. (2011)

0.25578 – 0.27160 ToF, three layer models, JUP230∗ Nettelmann et al. (2012a)

0.26381 – 0.26399 CMS, compact core models, DFT and SC EOS, JUP230∗ Hubbard & Militzer (2016b)

0.26391 – 0.26403 CMS, dilute and compact core models, physical EOS, Juno data Wahl et al. (2017a)

0.2629 – 0.2641† ToF, empirical EOS, earliest Juno data Ni (2018)

0.26341 – 0.26387 ToF, polytropic and polynomial EOS, Juno data Neuenschwander et al. (2021)

0.26027 – 0.26477 Abstract models with 50 spheroids that match only Juno’s J2 this work, Fig. 5

0.26385 – 0.26400 Physical two and three layer models, CMS, only match Juno’s J2 this work, Fig. 7

0.26387 – 0.26401 Abstract models with 50 spheroids that match Juno’s J2 and J4 this work, Fig. 5

0.26393 – 0.26398 Abstract models with 50 spheroids that match Juno’s J2 − J6 this work, Fig. 5

0.26393 ± 0.00001 Five layer model, physical EOS, CMS, match all Juno’s J2 − J10 this work, Fig. 8

Table 2. Predictions for Jupiter’s MoI (Re = 71492 km) derived under different assumptions. ∗JUP230 refers to Jacobson
(2003). †Converted using mean radius of Rm = 69911 km (private communication with author.) ‡Converted using Rm =
69893.175 km (Helled 2012).
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Figure 10. Comparison of the density profiles of abstract models with that of our physical reference model with five layers.
The shaded regions represent the standard deviations in density among the abstract models for a given radius.

Planet/reference Rotation period J2 × 106 J4 × 106 J6 × 106 C/MR2
e

Jupiter 9:55:29.711 h

Our 5 layer model Militzer et al. (2022) 14696.5063 –586.6085 34.2007 0.26393

Three layer model with T1bar = 183 K Miguel et al. (2022) 14698 –586.6 34.11 0.26391

Two models from Nettelmann et al. (2021) 14719 –587.7 34.30 0.26413

14723 –587.7 34.24 0.26419

Saturn

Our preferred model with DR from Militzer et al. (2019)† 10:33:34 h 16324.1078 –939.1687 86.8743 0.21814

Model from Nettelmann et al. (2021)† 10:33:34 h 16334.2 –940.149 84.208 0.21873

Two models from Mankovich & Fuller (2021) 10:33:38 h 16327.4 –939.507 84.686 0.21876

10:33:38 h 16332.1 –939.835 84.603 0.21879

Table 3. Comparison with Saturn and Jupiter models from other authors. With the CMS method, we calculated the Jn and
MoI values for models that were originally constructed with the theory of figures. †The CMS calculations were performed with
Re=60367 km and an outer pressure level of 0.1 bar but the results were rescaled to Re=60268 km.

a range for Jupiter’s MoI that includes our most reliable value. In the lower part of the table, we show how the range385

of predicted MoI shrinks when more and more of Juno’s gravity harmonics are reproduced.386

In Tab. 3, we compare our predictions for Jupiter and Saturn with results from CMS calculations that we performed387

for models that other authors had constructed with the theory of figures. The central quantity of this approach is the388

volumetric radius, s, of different interior layers. When we read in the model files from other authors, we construct a389
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density function, ρ(s), that we can interpolate. As our CMS calculation converges step by step towards a self-consistent390

solution, we calculate volumetric radius of every spheroid and obtain the corresponding density values by interpolation.391

We then update the density of every layer by averaging the density values of corresponding inner and outer spheroids.392

After all layer densities have been updated, we scale all densities again to match the total planet mass exactly. We393

increased the number of spheroids in our CMS calculation up to 65536 to obtain converged results. We found this to394

be a robust approach to import model files from other authors.395

The agreement among the resulting MoI values in Tab. 3 is very good even though some residual differences can be396

expected because the theory of figures is a perturbative approach that neglects high order terms. Furthermore not397

every model was constructed to match the measured gravity field with the same level of precision. Finally planetary398

interior models are complex and authors invoke an array of not always compatible set of assumptions. For example,399

while we invoke the concept of a dilute core and combine it with a model for the planet’s winds to match Juno’s J4 and400

J6 measurements, Miguel et al. (2022) succeeded in doing so by raising the 1 bar temperature from 166 to 183 K when401

ensembles of traditional three layer models were constructed. Still the gravity coefficients and computed MoI are in402

good agreement with those of our five layer model. The MoI values, that we computed for two models by Nettelmann403

et al. (2021), were 2 × 10−4 larger than our predictions. We attributed this difference to the fact that we obtained404

with our CMS calculations a J2 value that was 2× 10−5 higher than the Juno measurements.405

In Tab. 3, we also compare the predictions of four Saturn models that were constructed for a rotation period of406

10:33:34 h that Militzer et al. (2019) derived by matching the planet’s polar radius or for a very similar period of407

10:33:38 h that Mankovich et al. (2019) derived from ring-seismological calculations. The CMS calculations for models408

by Mankovich & Fuller (2021) and Nettelmann et al. (2021) yielded MoI values that were ∼ 6× 10−4 larger than that409

of our preferred Saturn model with DR. We primarily attribute this modest difference to the fact Mankovich & Fuller410

(2021) and Nettelmann et al. (2021) do not have DR in their models and thus make no attempt to match the observed411

J6 value. Overall the results in Tab. 3 confirm that a planet’s MoI is very well constrained by measurements of the412

gravity coefficients J2, J4, and J6.413

4. CONCLUSIONS414

With nonperturbative concentric Maclaurin spheroid method, we construct models for the interiors of Jupiter and415

Saturn under a number of different assumption. Our ensemble includes physical models based on a realistic EOS416

for hydrogen and helium, and abstract models with a small number of constant density spheroids. For both sets417

of assumptions we find that current spacecraft measurements of the Jupiter and Saturn gravity fields constrain the418

planets’ moment of inertia (MoI) fairly tightly, but then zonal winds (or differential rotation, DR) emerge as the leading419

source of MoI uncertainty, assuming the planets’ rotation rates have been constrained (by magnetic field measurements420

for Jupiter or by observations of the polar radius for Saturn.)421

If DR effects are excluded, the gravity coefficients J2, J4, and J6 one-by-one constrain the predicted MoI more and422

more tightly. Already mass, equatorial radius and J2 alone constrain Saturn’s MoI by ∼10% while Jupiter’s MoI is423

constrained to a level of ∼1%. If models are required to match also J4, the range of Saturn’s and Jupiter’s MoI shrinks424

to 3% and 0.05%. If models match also J6, the allowed MoI range shrinks to 0.07% and 0.008%, respectively.425

However, DR effects can make significant contributions to the gravity harmonics J6 and thereby alter the J6 term426

that needs to come from the interior structure if interior+wind models are constructed to match specific spacecraft427

measurements. We find that Saturn’s MoI drops by 0.4% when effects of DR are added to interior models that match428

the gravity harmonics J2, J4, and J6. In principle, such a drop could be detected by a direct precise MoI measurement429

by a spacecraft that orbits Saturn over a sufficiently long arc of Saturn’s precession.430

This 0.4% drop of Saturn’s MoI is mainly caused by the way models match the gravity coefficient J6. On Saturn431

the zonal winds are predicted to reach a depth of ∼9000 km (Iess et al. 2018) and involve 7% of the planet’s mass.432

The DR contributions to J6 were thus found to be rather large, on the order of 6%. For Jupiter, the winds reach only433

∼3000 km deep (Kaspi et al. 2018) and involve only 1% of the planet’s mass. So we estimate the contributions from434

DR to J6 to be only on the order of 0.8%. DR effects thus lower Jupiter’s MoI by only 0.01%, too small to be detected435

by the Juno spacecraft.436

Our models with DR predict Saturn’s MoI to be 0.2181±0.0002. This is 1% too small for Saturn to be in a spin-orbit437

resonance with Neptune today but Wisdom et al. (2022) predicted the planet was in resonance in the past when it had438

an additional moon that was tidally disrupted and formed the rings. With physical but simplified models for Jupiter’s439

interior that match only J2, we obtain wide range from 0.26385–0.26400 for the planet’s MoI. For our abstract models440
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with 50 spheroids for Jupiter’s interior that match the measured harmonics J2, J4 and J6, we derived a narrower range441

of possible MoI values from 0.26393-0.26398. Finally with our most plausible five layer models for Jupiter’s interior,442

we predict the planet’s MoI to be 0.26393 ± 0.00001, which is about ∼10% above the critical value of C/MR2 = 0.236443

for the planet to be in spin-orbit resonance with Uranus today (Ward & Canup 2006).444

Wisdom et al. (2022) argue that available high-precision measurements of Saturn’s zonal harmonics suffice to infer a445

tight MoI range that rules out a current Saturn precession resonance with Neptune. By the same token, our predicted446

range for Jupiter’s MoI needs to lie within the range constrained by Juno’s extended mission measurement of MoI.447
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