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ABSTRACT5

With the goal of matching spacecraft measurements from Juno and Galileo missions, we construct6

ensembles of 2, 3, 4, 5, and 6 layer models for Jupiter’s interior. All except our two layer models can7

match the planet’s gravity field as measured by the Juno spacecraft. We find, however, that some8

model types are more plausible than others. In the best three layer models, for example, the transition9

from molecular to metallic hydrogen needs to be at ∼500 GPa while theory and experiments place this10

transition at ∼100 GPa. Four layer models with a single sharp boundary between core and mantle11

would be short-lived due to rapid convective core erosion. For this reason, we favor our five layer12

models that include a dilute core surrounded by a stably stratified core transition layer. Six layer13

models with a small compact core are also possible but with an upper limit of 3 Earth masses for14

such a compact core. All models assume a 1 bar temperature of 166.1 K, employ physical equations of15

state, and are constructed with the nonperturbative Concentric Maclaurin Spheroid (CMS) method.16

We analyze the convergence of this method and describe technical steps that are needed to make this17

technique so efficient that ensembles of models can be generated.18

Keywords: Giant planets, Jupiter’s interior, gravity science19

1. INTRODUCTION20

The space missions Juno (Bolton et al. 2017) and Cassini (Spilker 2019) have provided us with a wealth of new21

data for Jupiter and Saturn, the two largest planets in our solar system. Multiple close flybys have determined the22

gravity fields of these planets with exquisite precision, far exceeding the earlier measurements by the Pioneer and23

Voyager missions (Campbell & Synnott 1985; Campbell & Anderson 1989). The earlier missions determined Jupiter24

gravity harmonics to be J2 = 14697 ± 1, J4 = −584 ± 5, and J6 = 31 ± 20 (all multiplied by 106 and adjusted to an25

equatorial radius of 71492 km) while today these coefficients are known to three orders of magnitude higher precision:26

J2 = 14696.5735±0.0017, J4 = −586.6085±0.0024, and J6 = 34.2007±0.0067 (Durante et al. 2020). This improvement27

has led to revision in the models of Jupiter’s interior required to match these gravity measurements. When interior28

models were only constrained by Jupiter’s mass, equatorial radius, J2 and J4, traditional three layer models for29

Jupiter’s interior sufficed (Stevenson 1982; Guillot 2005). These models typically included a compact core comprising30

up to 100% of heavy elements, presumably left over from the planet’s formation by core accretion (Bodenheimer &31

Pollack 1986). All these three layer models assumed Jupiter’s envelope to be inhomogeneous (Saumon & Guillot 2004;32

Militzer et al. 2008; Nettelmann et al. 2012), introducing a discontinuity in the helium or in the heavy elements fraction33

at some radius or pressure in the envelope. The motivation for the discontinuity was in part empirical because one34

needed an additional free parameter to match J4 while adjusting the core mass and heavy element fraction in the35

envelope enabled one to match the planet’s mass and J2. An exception were the homogeneous models reported by36

Militzer et al. (2008) who invoked deep differential rotation to match J4 instead. However, the required wind depth of37

∼10 000 km far exceeded values implied by Jupiter’s odd gravity harmonics (Kaspi et al. 2018) and typical magnetic38

field models (Christensen et al. 2020). Both these latter approaches favor a wind depth of ∼3000 km although an39

agreement has yet to be reached on precisely how the wind speeds decay with depth.40

A variety of model assumptions and techniques have been invoked to model Jupiter’s interior structure in the past. Ni41

(2018) combined the theory of figures (Zharkov & Trubitsyn 1978) with the approach by Anderson & Schubert (2007)42
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to adjust coefficients of an empirical polynomial function that represents the Jupiter’s interior density profile in order43

to match the Juno gravity measurements. Nettelmann et al. (2021) extended the ToF to technique to seventh order.44

Militzer & Hubbard (2023) constructed physical and abstract models of Jupiter’s interior structure to demonstrate that45

the gravity coefficients J2, J4 and J6 are sufficient to constrain Jupiter’s moment of inertia very tightly. The physical46

models rely on realistic equations of state and assumptions for the compositions while abstract models represent the47

planet’s interior by a small number of constant-density. Howard et al. (2023) studied the effects of various published48

equation of state (EOS) tables and also introduced an EOS modification. Moll et al. (2017), Müller et al. (2020), and49

Helled et al. (2022) studied the Jupiter’s interior convection and the evolution of a primordial, compact core that was50

originally composed to 100% of heavy elements. Liu et al. (2019) investigated whether such a core could be diluted51

by a giant impact. Core dilution is plausible because ab initio computer simulations have shown that all typical core52

materials such as water, silicates and iron are soluble in metallic hydrogen at megabar pressures (Wilson & Militzer53

2012a,b; Wahl et al. 2013; Gonzalez-Cataldo et al. 2014).54

Kerley (2004) first constructed a homogeneous baseline model to demonstrate that the pre-Juno gravity data cannot55

be matched unless the envelope is represented by at least two distinct layers. The need for Jupiter’s envelope to be56

inhomogeneous was recently reconfirmed by Miguel et al. (2022). The original justification for the inhomogeneity was a57

first-order phase transition from molecular to metallic hydrogen. However, ab initio computer simulations (Vorberger58

et al. 2010, 2012) have since shown that such a transition likely exists only at low temperature in hydrogen (Morales59

et al. 2010) while the temperatures in giant planet interiors are everywhere above the critical point so that molecular60

dissociation there occurs gradually. So this process by itself is insufficient to cause an inhomogeneity. Alternatively, the61

phase separation of hydrogen-helium mixtures (Morales et al. 2013) has been considered but so far there is insufficient62

evidence that the falling helium droplets will sequester any heavy elements besides neon (Wilson & Militzer 2010).63

In this article, we incorporate the nonperturbative concentric Maclaurin spheroid (CMS) method (Hubbard 2013)64

into a streamlined modeling procedure which achieves the high precision needed to exploit Juno constraints, while65

automatically matching basic constraints such as mass, equatorial radius, and low-degree zonal gravity harmonics.66

With Monte Carlo sampling (Militzer 2023a) we then efficiently generate large numbers of models with increasing67

degrees of complexity. We construct models for Jupiter’s interior assuming different compositions and layered struc-68

tures. We invoke one consistent set of physical assumptions. We adopt one equation of state derived with ab initio69

simulations (Militzer & Hubbard 2013) without introducing any corrections to lower its density, nor do we vary the70

temperature at 1 bar, 166.1 K measured by the Galileo entry probe (Niemann et al. 1998; Wong et al. 2004). This71

temperature value is also consistent with earlier radio occultation measurements by the Voyager spacecraft that yielded72

a value of 165 ± 5 K (Lindal et al. 1981). These remote observations very recently re-analyzed by Gupta et al. (2022)73

who determined higher temperatures of 167±4 and 170±4 K for latitudes of 6◦S and 12◦N respectively.74

We construct models that have between two and six layers as we illustrate in Fig. 1. We start from a reference model75

with five layers (Militzer et al. 2022) that contain an outer layer of molecular hydrogen, a helium rain layer, a layer76

of metallic hydrogen, a core transition layer, and a prominent dilute core in the center that may extend up to 60% of77

the planet’s radius. We generate two types of four layer models by either eliminating the helium rain layer or the core78

transition layer from our five layer reference models. Six layer models are derived by inserting a compact core into79

the reference models. Under our model assumptions, we will demonstrate that such a compact core cannot be heavier80

than 3 Earth masses for the models to be compatible with Jupiter’s gravity measurements. We also generate alternate81

types of five layer models by removing either the helium rain layer, metallic hydrogen layer, or the core transition82

layer.83

Finally we revisit the traditional three layer models and even try to construct two layer models with just a core and84

an homogeneous envelope. These two layer models do not fit the gravity field, while our three, four, five, and six layer85

models all do. Still some of these models are more plausible than others. For example, matching the gravity field86

with three layer models requires us to place a transition between a helium-depleted outer layer and an helium-enriched87

inner layer at a pressure of 500 GPa, which is incompatible with the physics of hydrogen-helium mixtures (Morales88

et al. 2013).89

This paper is organized as follows. In section 2, we describe our model assumptions and explain how we efficiently90

converge on model solutions for the interior structure and winds that match the planet’s radius, mass, gravity harmonic91

J2, and protosolar helium abundance. In section 3, we discuss the results for the different model types. We show that92

two layer models are unable to match J4 and explain why three layer models need to have a molecular-to-metallic93

transition at ∼500 GPa. We then analyze the properties of 4, 5, and 6 layer models. We describe how we place94
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constraints on the mass of the compact core and the helium distribution within the helium rain layer. We conclude95

with section 4.96

2. METHODS AND MODEL ASSUMPTIONS97

2.1. Methods for the Interior98

In this paper, we employ the CMS method to construct models of rapidly rotating giant planets that meet certain99

observational constraints such as planet mass, equatorial radius, helium content, etc. In principle one has two choices100

of how to meet such constraints because the CMS method essentially provides a way to converge onto a hydrostatic101

solution for a given pressure-density relationship by adjusting the shapes of all spheroids. One can then wait until the102

CMS method has converged, evaluate how well the constraints have been met, then vary certain model parameters,103

and restart the CMS procedure. Alternatively, one can adjust certain model parameters during the CMS convergence104

procedure so that certain criteria are met automatically as a hydrostatic solution is found. The latter method is obvi-105

ously much more efficient because it typically does not increase the cost of the CMS procedure and more importantly,106

it reduces the number of dimensions of the parameter space that model optimization and Monte Carlo calculation need107

to explore. We now discuss how we converge onto a valid planetary interior model that satisfies a number of plausible108

constraints:109

(1) For that reason, almost all CMS calculations fix the equatorial radius a, assumed to have been measured with110

such high precision that its remaining uncertainty has a negligible effect on all computed planet properties. Here we111

use a = 71492 km (n.b. the error bar on a is ±4 km) and associate it with a pressure of 1 bar. (Conversely, in Wahl112

et al. (2021), the equatorial radius was varied during the CMS convergence in order to match the planet mass as113

models of specific exoplanets with different rotation periods and oblatenesses were constructed.)114

(2a) Next we adjust the helium concentration in the interior so that the planet overall matches the protosolar115

hydrogen-helium fraction of Ỹ0 ≡ Y0/(X0+Y0) = 0.2777 derived from X0 = 0.7112 and Y0 = 0.2735 (Lodders 2010). In116

the outer molecular layer, we set Y1/(X1+Y1) = 0.2369 to be consistent with measurements of the Galileo entry probe,117

Y/(X + Y ) = 0.238± 0.005 (von Zahn et al. 1998). We assume the helium mass fraction Ỹ1 ≡ Y1/(X1 + Y1) remains118

constant in the molecular layer up to a pressure Prain,1 and from Prain,2 on, it is again constant at Ỹ2 ≡ Y2/(X2 + Y2).119

In the helium rain layer from Prain,1 to Prain,2, we gradually switch from one value to the other as a function of log(P ),120

Ỹ (P )= Ỹ1 + F2(x)
[
Ỹ2 − Ỹ1

]
(1)121

F2(x)=xα (2)122

x=
logP − logPrain,1

logPrain,2 − logPrain,1
(3)123

The switching function, F2, represents the fraction of Ỹ2 in the mixture and satisfies the expected values at the124

boundaries, F2(P = Prain,1) = 0 and F2(P = Prain,2) = 1. Besides representing a linear change from Ỹ1 to Ỹ2 when125

α = 1, it introduces the option of having a large helium fraction from that layer being sequestered by setting α ≫ 1126

or increasing the helium fraction in that layer by specifying α≪ 1. The simple form of Eq. 2 has the advantage that127

the average fraction across the helium rain layer is given by,128

⟨F2⟩ =
∫ 1

0

dxF2(x) = 1/(1 + α) . (4)129

(2b) Next we construct a spline function to represent the cumulative mass as a function of log(P ) so that we can130

derive the mass fraction that is stored in the layer between two pressure values. The global helium fraction, ⟨ Ỹ ⟩, is131

given by132

⟨ Ỹ ⟩=m1Ỹ1 + mrainỸrain + m2Ỹ2 , (5)133

=[m1 +mrain(1− ⟨F2⟩)] Ỹ1 + [mrain ⟨F2⟩+m2] Ỹ2 , (6)134

where m1, mrain, and m2 represent the fractional masses of the three respective layers without the contributions from135

heavy elements. Eq. 6 enables us to adjust Ỹ2 so that the global helium abundance matches the protosolar value,136

⟨ Ỹ ⟩ = Ỹ0.137
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Dilute 
  core

        Molecular hydrogen

   R=0.61 
 P=900 GPa
T=9900 K

Two layer model

Dilute 
  core

        Molecular hydrogen

    R=0.69 
  P=550 GPa
T=8900 K

   R=0.12 
 P=3900 GPa
T=17000 K

Compact 
  core, 4.0 ME

Three layer model

  Helium rain layer
    

Dilute 
  core

        Molecular hydrogen
  R=0.87 
 P=93 GPa
T=5000 K 

    R=0.64 
  P=760 GPa 
T=9900 K  

    R=0.54 
  P=1200 GPa 
T=11000 K  

Metallic hydrogen

Four layer model (A)

 Metallic hydrogen

Dilute 
  core

        Molecular hydrogen

   R=0.72 
 P=440 GPa
T=8300 K

   R=0.64 
 P=760 GPa
T=9900 K

   R=0.42 
 P=2000 GPa
T=14000 K

Four layer model (B)

  Metallic hydrogen
    

Dilute 
  core

        Molecular hydrogen

  R=0.87 P=93 GPa
T=5000 K

  R=0.70 P=450 GPa
T=8400 K

  R=0.62 P=790 GPa
T=10000 K

  R=0.42 P=2100 GPa
T=14000 K

  Helium rain
    

Reference model with five layers
(A)

  Helium rain layer
    

Dilute 
  core

        Molecular hydrogen

Compact 
  core, 2.5 ME

  R=0.87 P=92 GPa
T=4900 K 

  R=0.68 P=610 GPa 
T=9200 K  

  R=0.61 P=900 GPa 
T=10000 K  

  R=0.10 P=3900 GPa 
T=17000 K  

Five layer model (B)

 Metallic hydrogen

Dilute 
  core

        Molecular hydrogen
R=0.70 
P=515 GPa
T=8300 K

R=0.67 
P=620 GPa
T=9200 K

R=0.61 
P=910 GPa
T=10500 K

Compact 
  core, 2.5 ME

R=0.10 
P=3900 GPa
T=17000 K

Five layer model (C)

  Helium rain layer
    

Dilute 
  core

        Molecular hydrogen R=0.87 
P=92 GPa
T=4900 K 
R=0.67 
P=640 GPa 
T=9300 K  

  R=0.10 P=3900 GPa 
T=17000 K  

Metallic hydrogen

Compact 
  core, 2.5 ME

R=0.65 
P=740 GPa 
T=9800 K  

Five layer model (D)

  Helium rain layer
    

Dilute 
  core

        Molecular hydrogen R=0.87 
P=930 GPa
T=5000 K 
R=0.68 
P=610 GPa 
T=9200 K  

R=0.61 
P=910 GPa 
T=10500 K  

  R=0.09 P=3900 GPa 
T=17000 K  

Metallic hydrogen

Compact 
  core, 2.0 ME

R=0.65 
P=730 GPa 
T=9800 K  

Six layer model

Figure 1. Illustration of our 2, 3, 4, 5 and 6 layer models in Tab. 1. At every layer boundary we specify the pressure,
temperature, and fractional volumetric radius. The collection of thin solid lines represent the core transition layer that may
surround the dilute core. In the center is our reference model with five layers. The two types of four layer models are generated
by removing either the helium rain or the core transition layers. The five layer models B, C, and D were obtained by removing
one layer one from the reference model while adding a compact core. Such a core was included in our final six layer model. It
also distinguishes our simpler two and three layer models.
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(3) Finally, we discuss how the CMS procedure can converge directly onto the exact mass and J2 value of the planet.138

We decided to match J2 = (14696.5063±0.0006)×10−6 exactly because it has been measured with exquisite precision.139

(As recommend by Durante et al. (2020), we do not include the tidal effects on J2, estimated to be 6.72×10−8.) The140

planet mass has previously been matched by introducing an overall density scaling factor β (Militzer & Hubbard 2013)141

or by adjusting the density of a compact core represented by a single innermost spheroid (Wahl et al. 2017). Since our142

current set of models do not have a compact core or its mass is very small, it is no longer practical to match the planet’s143

mass by adjusting the core mass. So we instead match the planet’s mass and J2 by simultaneously adjusting Z1 and Z2144

as the CMS method converges to a hydrostatic solution. Z1 is the mass fraction of heavy elements in the outer layers145

of the planet that we assume to be constant from the atmosphere to the beginning of the core transition layer. Here146

our assumptions differ from those by Debras & Chabrier (2019) who matched J4 and J6 by assuming Jupiter’s outer147

enveloped is not fully convective and that the concentration of heavy elements decreased with increasing pressure. In148

this work, Z2 is the mass fraction of heavy elements in the dilute core. In the core transition layer, we assume Z to149

increase linearly as a function of log(P ) from Z1 and Z2.150

We find that adjusting Z1 and Z2 to match M and J2 is much more efficient than first adjusting Z1 to match the151

mass in an inner loop and then adjusting Z2 to match J2 in an outer loop. For example if a bisection procedure or152

Brent’s method (Press et al. 2001) are employed as an outer loop to bring the deviation f(Z2) = J2(Z2) − J target
2153

to zero, one has to converge multiple CMS models, which is inefficient. To start, one has to evaluate f(Z2) for two154

different values of Z2 that yield f values of opposite signs before Z2 can be refined iteratively. This means that even if155

one already has a reasonably good starting value for Z2, one has to step away from it and construct another hydrostatic156

CMS solution for a second Z2 value that is ultimately not needed. This is unnecessary and inefficient. To avoid such157

unnecessary steps, we define two following functions,158

f1(Z1, Z2)≡M(Z1, Z2) −Mplanet (7)159

f2(Z1, Z2)≡M(Z1, Z2)× J2(Z1, Z2)−Mplanet × J target
2 (8)160

and employ the Newton-Raphson method to adjust Z1 and Z2 while the CMS method converges to a hydrostatic161

solution that then matches M and J2 automatically. This approach requires us to compute the derivatives of M and162

(MJ2) with respect to Z1 and Z2, which we will explain in the following equations. (Alternatively, one may define163

f2(Z1, Z2) ≡ J2(Z1, Z2)− J target
2 , which leads to iteration equations of similar complexity.)164

In rare cases, the Jacobian derivative matrix (see. Eq. A1) for a particular Newton-Raphson step cannot be inverted165

or the Newton-Raphson method starts oscillating between two states. If this happens we insert a 2D regula falsi step166

to depart from such a pathological situation. Details of our regula falsi method are given in appendix A. We find that167

this combined approach works very well except in cases when Prain,1 and Prain,2 exceed the central pressure of the168

planet and the variable Z2 becomes irrelevant so that we no longer have two independent variables to match M and169

J2 simultaneously.170

Within the CMS method (Hubbard 2013), the planet’s interior is represented by a series of nested spheroids indexed171

by j, each with volume Vj . The total mass is derived from,172

M =
∑
j

ρj(Vj − Vj+1) =
∑
j

δjVj , (9)173

Vj =
2π

3
λ3
j

∫ +1

−1

dµ ζ3j (µ) , (10)174

where δj = ρj − ρj−1 represents the density difference of spheroid j and next outer spheroid j− 1. Following Hubbard175

(2013), the shape function, ζj(µ) ≡ ζj,k, is represented by a series of discrete quadrature points, µk = cos(θk), where176

θk are colatitude values. The distance of the spheroid surface from the origin is given by r(µ) = λjζj(µ) where λj is177

the equatorial radius of spheroid j.178

In a similar fashion, one can derive an expression for the product (M × Jn),179

(MJn)=
∑
j

δj Ĵj,n =
∑
j

ρj

(
Ĵj,n − Ĵj+1,n

)
(11)180

Ĵj,n=
−2π
3 + n

λn+3
j

∫ +1

−1

dµ Pn(µ) ζ
n+3
j (µ) . (12)181



6 Militzer and Hubbard

The coefficients J̃j,n from Hubbard (2013) are recovered through, J̃j,n = δj Ĵj,n/(λ
n
j M). The conventional gravity182

harmonics are obtained by183

Jn =
1

M

∑
j

δj Ĵj,n =
∑
j

λn
j J̃j,n . (13)184

Equations 9 and 11 would enable us to determine the derivatives of f1 and f2 with respect to Z1 and Z2 if we knew how185

the density, ρ(Ỹ , Z), varied with the contents of helium and heavy elements. Following Hubbard & Militzer (2016),186

we invoke the additive volume rule to incorporate the heavy elements into our equation of state (Militzer & Hubbard187

2013; Militzer 2013), ρ∗, that was computed for a single helium fraction, Y ∗, without any heavy elements (Y ∗ ≡ Ỹ ∗),188

ρ∗

ρ(Ỹ , Z)
= (1− Z)A+ Z

ρ∗

ρZ
with A =

(1− Ỹ) + (Ỹ −Y∗) ρ∗

ρHe

1−Y∗ . (14)189

ρHe is an EOS for pure helium (Militzer 2006, 2009; Militzer et al. 2021) that enables us to perturb the helium fraction190

from our standard value, Y ∗. We incorporate heavy elements in the envelope by following Hubbard & Militzer (2016)191

who conducted ab initio computer simulations of a solar-proportion mixture of H2O:CH4:NH3 and then represented192

the results by a function ρZ/ρ
∗ with that varies slowly pressure, which was found to be in agreement with later work193

by Soubiran & Militzer (2016).194

Equation 14 not only allows us to compute, ρ(Ỹ , Z), it also makes the evaluation of dρ(Ỹ ,Z)
dZ straightforward. It195

allows us to determine how the density of every layer ρj in Eqs. 9 and 11 depends on Z and therefore gives us access196

to the derivatives of f1 and f2 that we need when we employ the Newton-Raphson iterations to match the planet’s197

mass and J2 by adjusting Z1 and Z2 as the CMS procedure converges to a hydrostatic solution.198

In Fig. 2, we describe our preferred way to efficiently converge a CMS calculation. We start by setting up an199

optimized λ grid (Militzer et al. 2019) that anchors the equatorial radii of all spheroids. All other spheroid points are200

adjusted so that an equipotential emerges. Based on an earlier CMS calculation for Jupiter, the λ grid is chosen so201

that the corresponding density values fall on a logarithmic grid such that ρ(λj)/ρ(λj+1) =constant. This was shown202

to be a good choice (Militzer et al. 2019) and CMS results do not depend on the specifics of the earlier Jupiter model203

and there is no need to update the λ grid iteratively.204

At the beginning of the main loop in Fig. 2, we use Newton’s method to update the shapes of all spheroids ζj,k205

(Hubbard 2013), which is the most time consuming step besides the wind calculations. If the shapes are far from206

equilibrium, it may happen that the updated shapes of two adjacent spheroids cross, which is unphysical. We detect207

such rare events and correct spheroid shapes. It may also happen that the shapes start oscillating between two states.208

When we detect this, we insert a regula falsi step.209

We perform the thermal wind calculations once in the main loop to update the target value for J2 = JJuno
2 − Jwind

2 .210

In the fast, inner loop we update the gravity coefficients, Jn, spheroid densities ρj and pressures, Pj , because these211

calculations are inexpensive and scale linearly with spheroid number. We also update Z1, Z2, and Y2 as described212

above.213

If the model includes a compact core of prescribed mass, some additional steps are needed. First we derive a scale214

factor, f = (mcurrent
core /mtarget

core )−1/3 and then scale the λ grid inside the core region with λj = f × rcore× (Nl− j)/N core
l215

so that the equatorial radius of the outermost core spheroid becomes r
(new)
core = f × r

(old)
core . N core

l is the number of216

spheroids in the core while Nl is the total spheroid number. We also update the logarithmic λ grid in the envelope so217

that it ends at the revised r
(new)
core value.218

We find that our model predictions are not very sensitive to the assumed composition of a compact core because219

the density of typical core materials is much higher than that of hydrogen and helium, so it is primarily the mass220

of a compact core that matters. We still see some deviations when we compare models with a rocky compact core221

with models that assume a 50:50 rock-ice mixture. We follow Seager et al. (2007) when we adopt equations of state222

for the core materials but then complement it with more results from more recent ab initio simulations (Militzer &223

Wilson 2010; Wilson & Militzer 2014; Gonzalez-Cataldo & Militzer 2023). For rock, we assume a terrestrial mixture224

of MgSiO3 and iron with an iron mass fraction of 32.5%. We represent the ice in the compact core by assuming a pure225

H2O composition.226

2.2. Assumptions for Model Ensembles227



Jupiter’s Interior 7

Figure 2. Our preferred technique to efficiently converge onto a selfconsistent solution that includes a hydrostatic description
of the interior with the CMS method and a compatible wind model. It is novel that the planet’s mass, J2, and global helium
abundance are matched automatically as the calculation converges without a large computational overhead. Calculations of
spheroid shapes and the wind contributions to the Jn are performed only once in the main loop because they are rather expensive.
In the inner loop, the gravity coefficients, densities, pressures, the helium fraction Y2 and heavy element abundances Z1 and Z2

are updated more often because they scale linearly with spheroid number. If the model includes a compact core of a specific
mass target, the λ grid is updated in the inner loop to match that. Besides converging the gravity coefficients, Jn, other criteria
for mass, J2, or the overall helium abundance may be employed to terminate the main loop.

We employ Monte Carlo methods (Militzer 2023a,b) to construct ensembles of Jupiter models by accepting and228

rejecting moves according to the exp(−χ2/2) function that combines the terms, χ2 = χ2
J +χ2

H−He+χ2
wind+χ2

guide. The229

first and most important term measures the deviations of even and odd gravity harmonics between model predictions230

and the Juno measurements (Durante et al. 2020),231

χ2
J =

10∑
i=1

[
Jmodel
i − JJuno

i

δJJuno
i

]2
. (15)232
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δJJuno
i are the 1-σ uncertainties of the measurements. Following Militzer et al. (2019), we added the term χ2

H−He233

to generate models with helium rain parameters Prain,1 and Prain,2 that are compatible with phase diagram of H-He234

mixtures as derived by Morales et al. (2013). From the assumed entropy values for the molecular and metallic layers,235

S1 and S2, one can infer the temperatures T1 = T (S1, Prain,1) and T2 = T (S2, Prain,2) from the isentrope that are given236

by the equation of state. For the pairs Prain,1-T1 and Prain,2-T2, we find the closest points on the immiscibility curve237

by Morales et al. (2013), P ∗
1 -T

∗
1 and P ∗

2 -T
∗
2 , and then define the immiscibility penalty term,238

χ2
H−He =

2∑
i=1

CP

∣∣∣∣P ∗
i − Pi

Pi

∣∣∣∣+ CT

∣∣∣∣T ∗
i − Ti

Ti

∣∣∣∣ , (16)239

where CP and CT are weights that need to be balanced with those in other χ2 terms. We set CT /CP = 2. We do not240

square the individual terms because there is currently no agreement between ab initio simulation and experimental241

prediction on the conditions where hydrogen and helium become immiscible. Early path integral simulations showed242

that the two materials are miscible at 15 000 K (Militzer 2005). Vorberger et al. (2007) showed with ab initio simulation243

that hydrogen and helium are miscible at 8000 K. With more careful ab initio Gibbs free energy calculations, Morales244

et al. (2013) predicted hydrogen and helium to phase separate at approximately 6500 K for a pressure of 150 GPa.245

However, recent shock wave experiments by Brygoo et al. (2021) placed the onset of immiscibility at a much higher246

temperature of 10 200 K for 150 GPa. Because the deviations of the ab initio predictions are large and these findings247

to not yet been reproduced with other laboratory measurements, we will employ the Morales et al. (2013) results when248

we evaluate the χ2
H−He term in Eq. 16.249

We also add the wind term,250

χ2
wind =

1

m

m∑
i=1


[H(µi)−Hmax]

2
if H(µi) > Hmax

0 if Hmin ≤ H(µi) ≤ Hmax

[Hmin −H(µi)]
2

if H(µi) < Hmin

, (17)251

that keeps the depth of our winds, H, within perscribed limits of Hmin = 1500 km and Hmax = 4500 km so that the252

remain broadly compatible with predictions by Guillot et al. (2018). We evaluate them at m = 61 equally spaced µ253

points between –1 and +1 with µ = cos(θ) and θ being the colatitude. We work directly with the observed cloud-level254

winds from Tollefson et al. (2017) but then make the wind depth to be latitude dependent. One may allow the surface255

winds to deviate from the observed value and employ the same wind depth for all latitudes. Both types of wind models256

are compared in Militzer et al. (2022).257

We solve the thermal wind equation (Kaspi et al. 2016) to derive the density perturbation, ρ′,258

∂ρ′

∂s
=

2ω

g

∂

∂z
[ρu] , (18)259

for a rotating, oblate planet (Cao & Stevenson 2017). Instead of approximating the planet’s shape by a sphere, we260

employ the geometry that is provided by the equi-potential surfaces from the CMS calculation. z is the vertical261

coordinate that is parallel to the axis of rotation. s is the length of a path that starts form the equatorial plane and262

follows an equipotential surface that we derived with the CMS method. This method also provides us with the static263

background density, ρ, and the local acceleration, g, for a particular model. u is the differential flow velocity with264

respect to the uniform rotation rate, ω. We represent u as a product of the surface winds, us, from Tollefson et al.265

(2017) and a decay function of sin2(x) form (Militzer et al. 2019). This function facilitates a rather sharp drop similar266

to functions employed in Galanti & Kaspi (2021) and Dietrich et al. (2021). We integrate the density perturbation, ρ′,267

to determine the dynamic contributions to the gravity harmonics before we combine them with the gravity harmonics268

from the interior, Jmodel
n = J interior

n + Jwind
n and enter them into Eq. 15.269

Finally we add a number of additional penalty terms,270

χ2
guide = C

{
[pmin − p]

2
if p < pmin

0 otherwise
, (19)271

that help us guide the Monte Carlo ensemble to reach and remain in regions where a certain parameter, p, satisfies the272

condition p ≥ pmin that we consider physical. Similar terms can assure p2 ≥ p1 for two model parameters. We choose a273

large value of C like 1000 to assure compliance. We verify that χ2
guide = 0 for models that we publish. Z1 ≥ Zprotosolar274

is an obvious condition to satisfy but we also require Z2 ≥ Z1 and S2 ≥ S1.275
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Table 1. Parameters of different interior models in Fig. 1.

Parameter 2 layer 3 layer 4 layers 4 layers 5 layers 5 layers 5 layers 5 layers 6 layer

model model type A type B type A type B type C type D model

Z1 0.0206 0.0138 0.0161 0.0166 0.0156 0.0153 0.0153 0.0153 0.0160

α - - 3.00 - 9.41 11.18 - 10.07 13.68

Prain,1 (GPa) 900.00 550.00 93.32 442.93 93.08 91.64 515.00 91.81 93.09

Prain,2 (GPa) 900.00 550.00 760.59 442.93 443.17 613.90 515.00 636.65 609.04

Pcore,1 (GPa) 900.00 550.00 1189.65 760.90 786.17 613.90 622.18 736.75 731.92

Pcore,2 (GPa) 900.00 550.00 1189.65 2016.15 2051.67 903.61 905.54 736.75 916.33

Z2 0.1332 0.0931 0.1639 0.1780 0.1831 0.1095 0.1119 0.1083 0.1178

Mcompact
core (ME) 0.0 4.0 0.0 0.0 0.0 2.5 2.5 2.5 2.0

Note—We underlined repeated pressure values because they indicate that a specific layer is not included
in a model. Machine readable data files for every model are available in the supplemental material.

3. RESULTS AND DISCUSSION276

3.1. Convergence tests277

In Fig. 3, we compare how rapidly selected models of Jupiter’s interior converge in J4-J6 space with increasing278

number of spheroids. All models were constructed to agree with the protosolar helium abundance and to exactly279

match Jupiter’s mass, radius, and, unless noted otherwise, also J2 value as measured by the Juno spacecraft. The280

5 layer models converge the fastest because they do not contain any discontinuities in density. Already with 256281

spheroids, the computed J6 value differs only by 2×10−10 from corresponding result with 65536 spheroids, a difference282

that is smaller than Juno’s 1-σ error bar of 2× 10−9 (Durante et al. 2020).283

Converging J4 is a bit more challenging. With 1024 and 2048 spheroids, J4 differs by 2× 10−9 and 3× 10−10 from284

the 65536-spheroid result while the Juno J4 error bar is 8× 10−10. In all following figures, we report results that were285

obtained with 2048 spheroids that we derived with the accelerated version of CMS method (Militzer et al. 2019) using286

an acceleration factor of nint = 32. For the models in Fig. 3, we compared the results derived with nint = 32 and287

those of the not-accelerated version (nint = 1) but the differences were much too small to be discernible in Fig. 3. This288

underlines that the convergence of J4 and J6 is foremost controlled by the spheroid number and model type instead289

of the acceleration factor.290

When the coefficients of Jupiter’s gravity field are reported (Durante et al. 2020), the effects of the satellites have291

been removed from the forces acting on the spacecraft. This includes not only their direct gravitational forces but also292

the effect of the permanent tides that they introduce in Jupiter via the Love number k20. The measured J2 was thus293

reduced by 6.72 × 10−8, a value that was derived with theoretical methods because this effect cannot be measured294

directly. In Fig. 3, we include two 5 layer models with altered J2 values in order to determine which alteration295

magnitude is required to significantly affect the J4 and J6 that we calculated with a specific model. The results in this296

graph illustrate that J2 modifications of 10−6 or less are negligible for the purposes of this article, which means the297

tidal correction of J2 is approximately one order of magnitude too small to matter for our interior models.298

In Fig. 3, we also show 2 and 3 layer models that have an abrupt change in composition in the envelope. Because299

the density is no longer a continuous function of pressure, many more spheroids are needed to converge J4 and J6 with300

high precision. With 2048 spheroids, we are able to compute J4 and J6 with a precision of 5 × 10−8 and 6 × 10−9
301

or better, respectively. Both values are sufficiently small for the purpose of this study but the convergence could be302

improved with a more careful treatment of the layer interfaces.303

The magnitudes of J4 and J6 of our 2 layer model in Fig. 3 are smaller than those of our 3 layer models. The 2304

layer models better mimic the dilute-core effects in Militzer et al. (2022) than the 3 layer models can because they305

have 4 Earth masses stored in a compact core, which reduces the dilute-core effect. The magnitudes of J4 and J6 are306
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Figure 3. Convergence of the gravity harmonics J4 and J6 with increasing number of spheroids is demonstrated for selected
2, 3, and 5 layer models that match mass, radius, and J2 as measured by Juno or a slightly modified value to account for wind
effects. The 3 layer models have compact cores of 4 Earth masses with and without an ice fraction. The 5 layer models do not
include any density discontinuities and thus converge much faster than the 2 and 3 layer models. A comparison of the 5 layer
models shows that a correction of J2 by 10−6 has a small effect on the computed J4 and J6 values. The Juno measurements
have been subtracted from both Y axes. The results of the 2 layer models were shifted to reduce the range of Y axis. All models
were constructed without winds.
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slightly larger for an ice-free, rocky core composition than for a 50:50 rocky-ice mixture. Ice-free, rocky cores have307

higher density and the surrounding H-He fluid is thus exposed to a higher pressure, which increases its density and308

thereby enhances the effect of the core. This is the same trend that we have seen when modeling Saturn’s interior309

(Militzer et al. 2019). The masses of rocky cores were found to be slightly smaller than those of rock-ice cores.310

3.2. Two and three layer models311

The results from our two and three layer models are summarized in Fig. 4. All models match mass, radius, J2,312

and the two conditions for helium abundances Y1 and Y2 so that Galileo helium measurement is reproduced and the313

planet overall has a protosolar helium fraction. All models have a sharp transition in the envelope at the prescribed314

transition pressure, which is their main free parameter. For the three layer models, one can also prescribe the mass315

of compact core, which can either have a rocky composition with a terrestrial iron fraction of 32.5% or a rock-ice core316

with a Callisto-type ice fraction of 50%. Switching between these two plausible core compositions has only a modest317

effect on the other inferred properties. The two upper panels of Fig. 4 show that, for given core mass and transition318

pressure, ice-free cores increase Z1 and decrease Z2 slightly more than the corresponding rock-ice cores if one compares319

the predictions with the corresponding core-less two layer models. Also we found that a rock-ice core can have a320

13% larger mass than a ice-free core to yield the same shift in J4-J6 space, which is consistent with predictions for321

Saturn (Militzer et al. 2019) and is driven by the fact that the density contrast between ice and H-He is less than that322

between rock and H-He.323

The upper two panels of Fig. 4 shows how Z1 and Z2 respond to variations in the transition pressure. We added324

symbols and shaded regions to make it easier to follow different trends. The upper panel illustrates that all two and325

three layer models require a unexpectedly large transition pressure ≳ 400 GPa for Z1 to be at least of solar abundance.326

The upper panel also shows that, if models are required to match mass, radius, and J2 but not any Jn≥4, an increase327

in the core mass leads to an increase in Z1. At the same time, the middle panel shows that such an increase of the core328

mass is accompanied by a reduction Z2 so that the mass in the central region of the planet is approximately preserved.329

Besides these two main trends, the shape of the curves in the middle panel is controlled by two competing effects. If330

we increase the transition pressure, the mass of inner layer shrinks, so its heavy element fraction, Z2, may increase,331

as red curves for core-less models show. Conversely if the inner region already has a sizable compact core (≳ 3 Earth332

masses), there is less room for heavy elements in the metallic region and Z2 shrinks with increasing Z1 (orange and333

black curves in the middle panel).334

An important constraint on the core mass comes from the Juno measurements of J4 and J6, which we illustrate in the335

lower panel of Fig. 4. The green symbols and band represent models in the corridor around the Juno’s measurements336

J4 of size ±0.7 × 106 that was chosen because it is difficult to construct wind models that yield a larger shift in J4.337

We replicate the green band in the upper two panels to further constrain the core mass of plausible models. If one338

combines the J4 interval with the requirement that the outer envelope should have at least a protosolar abundance of339

heavy elements (Z0 = 0.0153 (Lodders 2010)), models with cores larger than 4 Earth masses can be ruled out. (In340

upper two panels, there is no overlap between black curves and the green band in a region that has not been greyed341

out.) The conditions on J4 (green band) and Z1 ≥ Z0 also require the transition pressure to be 570 GPa or larger, as342

the upper panel of Fig. 4 illustrates. Such a high transition pressure is not consistent with the physics of hydrogen-343

helium mixtures. Ab initio computer simulations have place the onset of the hydrogen-helium immiscibility region344

at approximately 100 GPa (Morales et al. 2013). The discrepancy in pressure makes all three layer models appear345

less plausible unless one increases Jupiter’s interior temperature (Miguel et al. 2022) or changes the EOS to reduce346

the density of H-He mixtures (Nettelmann et al. 2021). When Miguel et al. (2022) employed the Militzer & Hubbard347

(2013) EOS, most models include a helium transition from 300 to 450 GPa (see their Fig. A1). The trend towards348

high values is the same that we find here but the pressure values in the work by Miguel et al. (2022) are not as high as349

ours because they allow the 1 bar temperature to vary and predict values of approximately 183 K. Miguel et al. (2022)350

also reported a second, smaller group of interior models with a transition pressure of approximately 200 GPa. We do351

not find models because we do not include large jumps in temperature of up to 2000 K at the transition pressure.352

The bottom panel of Fig. 4 shows that the inclusion of 6 Earth mass cores leads to large shifts in J4-J6 space away from353

the Juno measurements because it diminishes the dilute-core effect that enabled us to match the Juno measurements354

in the first place (Militzer et al. 2022). If one compares rocky-core models without winds and a transition pressure355

of 800 GPa (blue filled circles), the magnitude of the shift is ∆J4 ≈ −8.5 × 10−6 and ∆J6 ≈ +0.76 × 10−6 (see grey356

arrow). For a lower transition pressure of 500 GPa (blue filled hexagons), the shift is still half as large approximately357
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Figure 4. Predictions from two and three layer models that have a sharp transition in the planet’s envelope at a specified
transition pressure (x axis of upper diagram). Three layer models have a compact core of 2, 4, or 6 Earth masses (blue, orange,
black lines) that is either of rocky (solid lines) and rock-icy (dash-dotted lines) composition. The green symbols and band
indicate the range of models with J4 values equal to JJuno

4 ± 0.7 × 106 across all panels. The blue filled pentagons and circles
indicate models with transition pressures, PT , of 500 and 800 GPa, respectively. The arrow in the lower panel illustrates the
shift in J4-J6 space that occurs when a 6 ME compact core is added a model with PT=800 GPa. The open and filled triangles
show models with Z1 values of protosolar or twice protosolar composition. The dark grey region indicates negative and thus
unphysical abundances, Z1 < 0. The medium grey regions show where Z1 or Z2 are less than the protosolar value (0.0153
(Lodders 2010)). The shaded triangular region in the middle panel indicates models that are Ledoux unstable (Z2 < Z1)
(Ledoux 1947). For reference, the yellow circle in the lower panel shows the Juno measurements that are exactly reproduced by
our preferred five layer models that includes winds. Its prediction from the interior alone are indicated by the yellow star.
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because the dilute core region contains more mass and the addition of compact core of 6 Earth masses does not have358

such a large effect. Still it causes the predicted J4 values to fall outside of the green corridor where one could argue359

that wind models would to able to bridge the remaining difference from the Juno measurements.360

3.3. Four, five and six layer models361

In this section, we compare properties of the Jupiter models in Fig. 1 that have at least four layers. The corresponding362

distributions of helium and heavy elements are shown in Fig. 5. Temperature, density, and pressure are shown in Fig. 6.363

The temperature profile is determined by an outer isentrope with entropy, S1, where hydrogen occur molecular form,364

and an inner isentrope with S2, and where hydrogen is metallic. See section 2.2 and Militzer et al. (2022) for details.365

The bottom panel of Fig. 6 includes an isentrope of protosolar composition for comparison. At lower pressures and366

high fractional mass (M > 0.75), its density is higher than that of all models because they include a depletion of367

helium (Y < Y0). At higher pressure and low fraction mass (M < 0.5), the protosolar density is lower because the368

models include dilute cores (Z ≫ Z0).369

All calculations including wind models were generated under consistent assumptions (Militzer et al. 2022). The370

contributions from the interior and winds are illustrated in Fig. 7. Except for our two layer models, all other models371

can fit the Juno gravity measurements very well. Therefore the following discussion will focus on the question of which372

models are more plausible given the physics of hydrogen-helium mixtures and, to a lesser degree, on magnetic field373

information.374

With our two layer models, we were not able to match Jupiter’s J4 and J6. Even when wind contributions were375

included, discrepancies of ∆J4 ≈ 3 × 10−7 and ∆J6 ≈ 2 × 10−8 remained (see Fig. 7). For this reason, we do not376

discuss the two layer models further. Still, the best models in this class have an abrupt change in composition at377

∼900 GPa and fractional radius ∼0.6.378

We begin the following discussion with our fiducial five layer model of type A that include a helium-rain layer and a379

dilute core where the heavy elements only contribute mass fraction of Z2 ∼ 0.18 (see Fig. 5). Their fraction decreases380

to Z1 ≈ 0.0153 across the core transition layer where the pressure decreases from 903 to 614 GPa and the fraction381

cumulative mass increase from 0.20 to 0.54. By inserting a compact core with Z = 1 into this model, we obtain our six382

layer models. We are not able to insert a rocky core heavier than 2.5 Earth masses without deviating from the Juno383

gravity measurements as we illustrate in Fig. 8. If we assume a rock-ice rather than a purely rocky composition for384

the compact core, the maximum mass increases to 3.0 Earth masses (see Fig. 8). Here we assumed the compact core385

to be homogeneously mixed and to have a Callisto-type composition with 50%-50% rock-ice mass fraction. Ab initio386

EOS tables were used to derive the density for all materials in the compact core (Wilson & Militzer 2014). The ice387

fraction in the compact core reduces its density and therefore decreases the density contrast to the hydrogen-helium388

mixture, which means the models can accommodate slightly larger compact cores.389

It is possible to accommodate larger compact cores but this would require a change in the EOS of hydrogen and390

helium. If their density were reduced by 2% below values of the Militzer & Hubbard (2013) EOS in the crucial pressure391

interval from 20 to 100 GPa, a rocky compact core of ∼5 Earth masses could be accommodated. If the density from392

10 to 100 GPa is reduced by 3% compact cores of ∼6 Earth masses become plausible as we illustrated in Fig. 8.393

The reason for a mass limit on the compact core is that it takes away from the dilute-core effect that enabled us to394

match J4 and J6 in the first place. Furthermore, Fig. 1 and 5 show that a compact core of 2.5 Earth masses leads to a395

reduction of heavy elements in our dilute core from Z2 ∼18%, to ∼11%. More importantly the presence of a compact396

core increases the dilute core radius to ∼0.61 where it decays rather sharply until R ∼0.65. It thereby “pushes” against397

the lower boundary of the helium rain layer and thereby shrinks the metallic hydrogen layer. It is consistent with the398

gravity measurements to eliminate the metallic hydrogen layer entirely, which yields the five layer model of type B in399

Fig. 1. Alternatively one can keep the metallic hydrogen layer and eliminate the core transition layer to obtain the five400

layer model of type D. Model types B and D have extended helium rain layers and a compact core, which make them401

similar to our six layer models. Finally, one may remove the helium rain layer from our six layer models to obtain our402

five layer models of type C. To match Juno’s J4 and J6 measurements, the transition to metallic hydrogen must occur403

at a rather high pressure of ∼500 GPa, which makes this model similar to our four layer models of type B.404

Additional information might be harnessed by analyzing Jupiter’s magnetic field which was found to be unexpectedly405

complex (Moore et al. 2018). Recent magnetohydrodynamic simulations compared the effects of stably stratified (not406

convective) and fully convective layers in Jupiter’s interior and concluded that a stably stratified interior structure407

would not be compatible with the observed magnetic field (Moore et al. 2022). This favors models with thick layers408
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Figure 5. Distributions of heavy elements and helium of models in Fig. 1 as function of fractional cumulative mass that has
been derived by adding the contribution of different spheroids from the inside out. All models have dilute cores that either end
abruptly [models with two, three, and four (A) layers] or gradually [four (B), five (A+B) and six layers]. The three, five (B),
and six layer models also have compact cores (Z = 1) of 4.0, 2.5, and 2.0 Earth masses. In the outer envelope, all models match
the helium abundance that the Galileo entry probe measured. In the interior, they transition to a layer with a higher helium
abundance so that the planet has a protosolar hydrogen-helium abundance overall. This transition may either be abrupt [two,
three, four (B) layer models] or occur over a extended helium rain region [four (A), five (A+B) and six layer models].
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Figure 7. Predictions for the even Jn from different interior models and their wind contributions are plotted in Jn-Jn+2
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The other symbols represent the seven models from Fig. 1. The large symbols represent the contributions from the interior
model only while the small symbols represent interior and wind contributions combined. The combined contributions fit the
Juno measurements very well except for the two layer model that fails to fit J4.

of metallic hydrogen and extended dilute cores because we assume these regions to be homogeneous and convective.409

Still given the magnetic field data, it is not possible to rule out any class of models rigorously.410

There are two obvious choices for generating four layer models from our five layer model of type A. Both are411

illustrated in Fig. 1. One can either eliminate the core transition layer (model type A) or the helium rain layer412

(model type B). In A-type models, the dilute core is terminated abruptly (Pcore,1 = Pcore,2) while it decays gradually413

across the core transition layer of our five layer models. B-type models have a sharp boundary in composition at414

Prain,1 = Prain,2 between the layer that is dominated by molecular hydrogen and the layer below that contains mostly415

metallic hydrogen.416

In Fig. 9, we plot correlation among various parameters of our four and five layer models. Our four layer models of417

type B and five layer models of type C have a sharp instead of gradual change in helium abundance. We find that this418

change in composition must occur at a rather high pressure from 350 to 550 GPa. This is much higher than a pressure419

of ∼100 GPa for which ab initio simulations have predicted of onset of the hydrogen-helium immiscibility Morales420

et al. (2013). For that reason, we do not favor Jupiter models that do not include an extended helium rain layer.421
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Figure 8. The symbols show the cost function χ2 of model ensembles that were constructed with compact cores of a chosen
mass under four different assumptions. We added a rocky core to our reference five layer model (the red symbols). The red
line and shaded area were added to illustrate that for core masses larger than 2.5 Earth masses, the cost function increases
drastically, and models that match the Juno data well can no longer be constructed. If compact cores of a rock-ice composition
are introduced instead, cores of 3.0 Earth masses still yield good models (black dashed lines). If the density is lowered by 2%
over the pressure range from 20 to 100 GPa, compact cores of ∼5 Earth masses become possible (blue symbols, line, and shaded
area). If the density is lowered by 3% over the pressure range from 10 to 100 GPa, compact cores of up to ∼6 Earth masses
still match the Juno data quite well (green symbols, line, and shaded area).

Fig. 9 also shows that the helium rain layers of our four layer models of type A and our five layer models of types B422

and C have more extended helium rain layer than our five layer models of type A (see also Fig. 1). The Pcore,1-Pcore,2423

correlation plot shows that our five layer models of type A and four layer models of type B have thick core transition424

layers that may extend approximately from 650 to 2400 GPa. In our four layer models of type A, the dilute core ends425

abruptly at Pcore,1 = Pcore,2 from 1000 to 1300 GPa. In our five layer models of type D, this sharp transition occurs at426

lower pressures from 650 to 800 GPa. Our five layer models of types B and D are not very differ but allow for larger427

Pcore,2 values of up to 1100 GPa.428

Furthermore Fig. 9 shows that Z2, the heavy elements abundance of the dilute core, is positively correlated with429

Pcore,2 and in some cases also with Pcore,1. The reason is that for fixed Z2 value with Z2 ≫ Z1, an increase in Pcore,2430

shrinks the dilute core and this leads to a reduction of heavy element abundance of the core region overall (see Fig. 5).431

To compensate for such a reduction, Z2 need to rise if Pcore,2 is increased. One also finds that five layer models of432

types B, C, and D have lower Z2 values because they have larger dilute cores.433

Finally panels (c) and (f) of Fig. 9 show that the total amount of heavy Z elements, MZ , in the planet varies between434

23.5 and 25.5 Earth masses (7.4–8.0%). Within the ensemble of a given model type, MZ is not strongly correlated435

with Pcore,1 nor with Z2 but it does depend on the model type. Five layer models of types B, C, and D, that include436

a compact core of 2.5 Earth masses, have a slightly lower total amount of heavy elements of between 23.5 and 24.5437

Earth masses. Four layer models of type A, that do not have a core transition layer, have between 24 and 25 Earth438

masses worth of heavy elements. The highest amounts of between 24.8 and 25.4 Earth mass are predicted for five layer439

models of type A and for four layer models of type B. Similar results can be expected because both model types differ440

only by the helium rain layer. It should be noted, however, that one can construct models with substantially higher441

amounts of heavy Z elements by assuming a superadiabatic temperature exists in the core transition layer (Militzer442

et al. 2022).443
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Figure 9. Correlation plot for parameters of our four and five layer models. The four layer models of type B and five layer
models of type C have no helium rain layer, which implies Prain,1 = Prain,2 and leads to the straight diagonal line in panel (a).
The other model types plot farther to left in this panel because they have extended helium rain layers with Prain,2 ≫ Prain,1.
The four layer models of type A and five layer models of type D have no core transition layer, which implies Pcore,1 = Pcore,2

and means that those models plot on a straight line in panel (b). The other model types have extended core transition layers
with Pcore,2 > Pcore,1. Panels (d) and (e) show that the heavy element fraction of the core, Z2, is positively correlated with the
outer pressures and in some cases also with the inner pressure of the core transition layer. Panels (c) and (f) show that the
total mount of heavy elements varies between 23.5 and 25.5 Earth masses.

Figure 10 was constructed to study whether Juno gravity measurements allow us to constrain the helium distribution444

within the helium rain layer. For this purpose, we constructed various MC ensembles for different exponents, α in445

Eq. 2, for four and five layer models of type A. We find that a linear increase of helium fraction with log(P ) is446

incompatible with the Juno measurements and our modeling assumptions. Figure 10 shows that α needs to be three447

or larger, which means a substantial amount of helium has been sequestered from the upper part of the helium rain448

layer.449

On the other hand, we were not able to obtain an upper limit of α. With increasing α, the composition within the450

helium rain approaches that of the molecular layer above and transition to the metallic layer becomes increasingly451

sharp. In the limit of large α, the five layer models of type A approach the four layer models of type B that require a452

deep transition (R ∼ 0.71) from 350 to 550 GPa.453

We see the same trend in our three layer models that include a compact core and a sharp transition from molecular454

to metallic hydrogen. This transition needs to be at ∼550 GPa to match the gravity data. This is a pressure value455

that is too high to be compatible with the physics of hydrogen-helium mixtures. So in conclusion, we do not favor456

two layer, three layer, B-type four layer models. On the other hand, four layer models of type A, five layer models of457

types A, B and D but also six layer models with a very modest compact core remain plausible.458

3.4. Jn weight functions459

Equation 13 specifies which contribution a particular spheroids makes to the gravity harmonics, Jn. Therefore,460

the individual terms, λn
j J̃j,n = δj Ĵj,n/M , have been interpreted as weights, which have been plotted as function of461

spheroid radius to illustrate that the most important contributions to higher order gravity harmonics come from the462

outer layers of the planet (Militzer et al. 2016). Here, we propose a slightly different normalization factor of 1/Nj for463
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Figure 10. Cost function χ2 vs. helium rain parameter, α, in Eq. 2 is shown for an ensemble of five layer models (blue
diamonds) and one of four layer models of type A with a sharp core boundary (red circles). With increasing α, more helium has
been sequestered to deeper layers, which reduces the density in the upper region of the helium rain layer and thereby makes it
easier to construct models that match the Juno and Galileo data. For α less than 3, a good match becomes increasingly difficult
to obtain, which manifests itself in a sharp rise in the cost function for small α values. This increase is very similar for both
type of ensembles as two shaded regions illustrate.

these functions to remove the dependence on the choice for the λ grid,464

worg
j,n =

λn
j J̃j,n

Nj,n
=

δj Ĵj,n
MNj,n

with Nj,n = Jn[λj − λj+1] . (20)465

We also divide by Jn to remove their magnitudes from the weight functions. We show these weight functions in the466

upper panel of Fig. 11 for our three and five layer models. The density discontinuity in the three layer model at467

550 GPa introduces a δ function into the weights at R ∼ 0.7. From a CMS perspective, this is very plausible. The468

discontinuity in density is represented by one particular spheroid, j, whose outer boundary coincides with the 550 GPa469

level. This spheroid adds a particularly large density, δj , to the planet, which is equal to the jump in density at the470

discontinuity from ρj−1 to ρj . Therefore, the weights in Eq. 20 resemble in a way the first derivative of the planet’s471

interior density structure with respective radius, which explains why the weight functions are not particularly smooth472

for R ≳ 0.9.473

When one interprets the weight functions in the upper panel of Fig. 11, one might be tempted to associate the value474

of worg(λi) with the material that is stored between λj and λj+1 while in fact it represents an entire spheroid that475

has an equatorial radius of λ and includes material in the very center of the planet. However, one can easily derive476

the contributions to Jn that arise from material that is stored in between the spheroids j and j + 1 and we use this477

contribution to define a modified weight function,478

wmod
j,n =

ρj
MNj,n

[
Ĵj,n − Ĵj+1,n

]
. (21)479

The original and modified weight functions are normalized in the same way,480

1 =
∑
j

[λj − λj+1]w
org/mod
j,n ≈

∫
dλworg/mod

n (λ) . (22)481
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We plot these modified weight functions for our three and five layer models in the middle panel of Fig. 11. They still482

convey the message that the outer parts of the planet contribute most to the higher Jn but now it is easier to see483

why a dilute core, that extends to R ∼ 0.5, has an impact on J4 and J6. Furthermore the modified weight functions484

are much smoother than the original ones. A density discontinuity at 550 GPa now only leads to a discontinuity in485

the weight functions rather than a δ function. In simple terms one can say that the modified weight functions reflect486

the contributions from the density in each layer while the original weight functions represent the contributions from487

the density increase in every layer and are therefore closer to core concept of the CMS technique that represents a488

rotating planet by a sum of nested, constant-density spheroids. The modified weight functions are similar to those489

that Fortney et al. (2016) derived with theory of figures calculations but they are not identical, nor are the weight490

functions from different theory of figures calculations because assumptions for the interior density structure matter.491

Nettelmann et al. (2013) predicted the weight functions of J2–J8 for Saturn to respectively have maxima at 0.82, 0.90,492

0.92, and 0.94 fractional radii while Guillot (2005) predicted all weight functions for Jupiter to peak within a narrow493

range of only 0.95–0.97. With CMS calculations for Jupiter, we predict the four weight functions to have maxima at494

0.68, 0.83, 0.88, and 0.91 fractional radii respectively.495

As illustrated in Eq. 22, one can also view the sum over spheroids as an integral over the equatorial radius λ. This496

allows us to rewrite Eq. 11 and ask the question how a small density modification, ρ′(λ), changes the computed product497

(MJn),498

(MJn) + (MJn)
′ =

∫
dλ [ρ(λ) + ρ′(λ)] w̃n ≡ ⟨ρ+ ρ′, w̃n⟩ with w̃n =

Ĵj,n − Ĵj+1,n

λj − λj+1
(23)499

⟨. . .⟩ represents the integral over λ. The density change can be expressed in terms of P basis functions, ρ′(λ) =500 ∑P
m=1 cmfm(λ), which yields,501

(MJn)
′ = ⟨ρ′, w̃n⟩ =

P∑
m=1

cm ⟨fm, w̃n⟩ (24)502

This linear equation opens up the possibility of adjusting the coefficients, cm, to trigger a change of just one specific503

Jn while leaving the mass (M = −J0) and other Jn unchanged to first order. In the lower panel of Fig. 11, we give an504

example for a density modification function that changes J4 but not the mass nor J2.505

This function was derived by setting P = 3 to consider changes in M, J2, and J4. We opted to introduce P different506

density modification functions, ρ′p(λ) =
∑P

m=1 Cp,mfm(λ) and to represent their coefficients by the matrix Cp,m. One507

can solve for this matrix by inverting the matrix Fm,n ≡ ⟨fm, w̃n⟩ so that every density modification function affects508

just one of the three variables M, J2, and J4. This requires the matrix product of
↔
C and

↔
F to equal the identity509

matrix,510

↔
I =

↔
C

↔
F (25)511

The function in the lower panel of Fig. 11 has positive and negative regions so that mass can be preserved when the512

density is modified. The function also peaks at large radii where the magnitude of J4 weight function is higher than513

that of other functions. This is just one specific example. One needs to keep in mind the shape of the resulting density514

modification functions strongly depends on the choice of basis functions, fm, and on the variable P that specifies how515

many Jn are considered.516

4. CONCLUSIONS517

We constructed models for Jupiter’s interior with a dilute core that match the recent gravity measurements of518

the Juno spacecraft as well as the temperature measurements of the earlier Galileo entry probe. We employ the519

nonperturbative CMS method to derive a hydrostatic solution (without winds) for the interior of the rapidly rotating520

planet and then insert the oblate structure into the thermal wind equation to derive the gravity contributions from521

the winds. These selfconsistent models allow us matches even and odd harmonics of Jupiter’s gravity field under one522

set of physical assumptions. For example, we use equations of state derived from ab initio computer simulations to523

derive the density of given pressure, temperature, and composition. We do not change ab initio EOS in ad hoc ways,524

increase the temperature in Jupiter’s outer layer nor construct models that have a less than solar abundance of the525

heavy elements.526

We studied models with different numbers of layers in order to determine which models match the Juno gravity527

measurements and identify those that are most compatible with the physics of hydrogen-helium mixture and informa-528

tion on how the a giant planet convects. We found that one cannot match the Jupiter’s gravity field with two layer529
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Figure 11. The upper and middle panels show the original and modified weight functions vs. the volumetric radius. The
colors label various even J2 – J8. The thick dashed lines show the weight functions for the three layer model in Figs. 1, 5, and
7 while the thin dotted lines represent our fiducial five layer model. The lower panel illustrates a density modification in the
planet that changes J4 but leaves the planet’s mass and J2 unchanged to first order. (All curves remain unchanged regardless
whether they were computed with or without acceleration, nint = 32 and nint = 1.)
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models. A good match is obtained with models that have three layers or more. However, three layer models and four530

layer models, that have an abrupt transition from molecular to metallic hydrogen, require that this transitions occurs531

very deep in the planet at ∼ 500 GPa respectively while experiments and ab initio computer simulations indicate the532

molecular-to-metallic transition occurs approximately at 100 GPa. For this reason, we find these models less plausible533

than our four, five and six layer models that include an extended helium rain layer that begins at ∼100 GPa. This534

provides further support for the hypothesis that there are at least two changes in composition in Jupiter’s interior: a535

helium rain layer and a transition to a dilute core.536

Moll et al. (2017) studied the time scale for giant planet cores to be eroded convectively under two assumptions.537

They showed that if there exists only a single sharp boundary in composition between core and the H-He envelope,538

the core erodes very quickly on a million-year timescale. In this case, the envelope efficiently extracts heat and heavy539

elements. However, if the core is surrounded by a stably stratified layer, the core will be preserved over billions of540

years. For this reason we favor our five layer models with a stably stratified core transition layer over our four layer541

models of type A. They have a sharp core-envelope boundary, which implies the dilute core would be rapidly eroded.542

Finally we derived our six layer models by inserting a compact core into our extended dilute core of our five layer543

models. If we assume a rocky composition for the compact core, we find it mass cannot be larger than 2.5 Earth544

masses. If we assume a rock-ice composition this limit increases to 3.0 Earth masses, which is only about 1% of the545

planet’s mass. Making the compact core more massive than that would require removing so much mass from the dilute546

core that one can no longer match the gravity harmonics J4 and J6. Based on these arguments, we currently favor our547

five layer model but a six layer structure with a small compact core of up to 3.0 Earth masses are equally plausible.548

We expect such models to be revised when the equation of state of hydrogen is measured more precisely, additional ab549

initio computer simulations are performed, interior and magnetic field calculations are coupled more tightly or when550

the June spacecraft provides us with additional information for the planet’s atmosphere or gravitational field.551

APPENDIX552

A. N-DIMENSIONAL ROOT FINDER553

The Newton-Raphson method (Press et al. 2001) is an elegant procedure to iteratively solve N equations, f⃗(x⃗) = 0,554

with N unknowns that are represented by the vector x⃗. Starting from an initial guess, the vector x⃗ is improved step555

by step,556

x⃗(new) = x⃗(old) +∆x⃗ with
←→
J ∆x⃗ = −f⃗

(
x⃗(old)

)
. (A1)557

This methods requires knowledge of the Jacobian derivative matrix, Jij = ∂fi
∂xj

, which is often be inaccessible in558

practical applications that involve complex functions f⃗ . So here we propose to obtain these derivatives by linearly559

fitting the last N+1 points, x⃗(1), . . . , x⃗(N+1) and the every function fi(x⃗) separately for i = 1 . . . N . To simplify the560

following equations, we set N = 2, but our approach is general. For every function i = 1 and 2 separately, we solve561

this system of linear equations:562 [
x
(1)
1 − x

(3)
1 x

(1)
2 − x

(3)
2

x
(2)
1 − x

(3)
1 x

(2)
2 − x

(3)
2

](
∂fi
∂x1

∂fi
∂x2

)
=

(
fi
(
x⃗(1)

)
− fi

(
x⃗(3)

)
fi
(
x⃗(2)

)
− fi

(
x⃗(3)

) ) (A2)563

to obtain approximate values for the Jacobian, Jij . Then we perform the standard Newton-Raphson step in Eq. A1 to564

obtain the step ∆x⃗ and next point x⃗(4) = x⃗(3) +∆x⃗ before dropping the earliest point, x⃗(1). To start, one needs to set565

a simplex of N+1 points that may be constructed from a single point, x⃗(1), by shifting the N coordinates individually,566

x
(1+i)
j = x

(1)
j + δij∆xj where ∆xj represent a chosen step size and δij is the Kronecker delta symbol. This root-finding567

algorithm relies in N + 1 points while the Newton-Raphson method uses only one. So it is similar to switching from568

the 1D Newton method that uses one point x and the derivative df
dx to the regula falsi method (Press et al. 2001) that569

employs two points but does not rely on derivatives.570

This work was supported by NASA mission Juno and by the Center for Matter under Extreme Conditions (CMEC)

under a grant by the Department of Energy-National Nuclear Security Administration.

571

572



Jupiter’s Interior 23

REFERENCES

Anderson, J. D., & Schubert, G. 2007, Science, 317, 1384,573

doi: 10.1126/science.1144835574

Bodenheimer, P., & Pollack, J. B. 1986, Icarus, 67, 391,575

doi: 10.1016/0019-1035(86)90122-3576

Bolton, S. J., Adriani, A., Adumitroaie, V., et al. 2017,577

Science, 356, 821, doi: 10.1126/science.aal2108578

Brygoo, S., Loubeyre, P., Millot, M., et al. 2021, Nature,579

593, doi: 10.1038/s41586-021-03516-0580

Campbell, J. K., & Anderson, J. D. 1989, Astron. J., 97,581

1485582

Campbell, J. K., & Synnott, S. P. 1985, Astron. J., 90, 364583

Cao, H., & Stevenson, D. J. 2017, J. Geophys. Res. Planets,584

122, 686, doi: 10.1002/2017JE005272585

Christensen, U. R., Wicht, J., & Dietrich, W. 2020, ApJ,586

890, 61, doi: 10.3847/1538-4357/ab698c587

Debras, F., & Chabrier, G. 2019, The Astrophysical588

Journal, 872, 100, doi: 10.3847/1538-4357/aaff65589

Dietrich, W., Wulff, P., Wicht, J., & Christensen, U. R.590

2021, Monthly Notices of the Royal Astronomical591

Society, 505, 3177, doi: 10.1093/mnras/stab1566592

Durante, D., Buccino, D. R., Tommei, G., et al. 2020,593

Geophys. Res. Lett., 47, e2019GL086572594

Fortney, J. J., Helled, R., Nettelmann, N., et al. 2016, in595

Saturn in the 21st Century, ed. B. Kevin, M. Flasar,596

N. Krupp, & S. Thomas (Cambridge University Press),597

1–28. https://arxiv.org/abs/1609.06324598

Galanti, E., & Kaspi, Y. 2021, MNRAS, 501, 2352–2362599

Gonzalez-Cataldo, F., & Militzer, B. 2023, Phys. Rev. Res.,600

in press601

Gonzalez-Cataldo, F., Wilson, H. F., & Militzer, B. 2014,602

Astrophys. J., 787, 79603

Guillot, T. 2005, Ann. Rev. Earth Planet. Sci., 33, 493604

Guillot, T., Miguel, Y., Militzer, B., et al. 2018, Nature,605

555, doi: 10.1038/nature25775606

Gupta, P., Atreya, S., Steffes, P. G., et al. 2022,607

arXiv:2205.12926608

Helled, R., Stevenson, D. J., Lunine, J. I., et al. 2022,609

Icarus, 378, 114937,610

doi: https://doi.org/10.1016/j.icarus.2022.114937611

Howard, S., Guillot, T., Bazot, M., et al. 2023, A&A, 672,612

A33, doi: 10.1051/0004-6361/202245625613

Hubbard, W. B. 2013, Astrophys. J., 768, 43,614

doi: 10.1088/0004-637X/768/1/43615

Hubbard, W. B., & Militzer, B. 2016, Astrophys. J., 820, 80616

Kaspi, Y., Davighi, J. E., Galanti, E., & Hubbard, W. B.617

2016, Icarus, 276, 170618

Kaspi, Y., Galanti, E., Hubbard, W., et al. 2018, Nature,619

555, doi: 10.1038/nature25793620

Kerley, G. I. 2004, Structures of the Planets Jupiter and621

Saturn622

Ledoux, P. 1947, Astrophys. J. Lett., 105, 305623

Lindal, G. F., Wood, G. E., Levy, G. S., et al. 1981,624

Journal of Geophysical Research: Space Physics, 86,625

8721, doi: 10.1029/JA086iA10p08721626

Liu, S.-F., Hori, Y., Muller, S., et al. 2019, Nature, 572, 355627

Lodders, K. 2010, in Astrophysics and Space Science628

Proceedings, ed. A. Goswami & B. E. Reddy (Berlin:629

Springer-Verlag), 379–417630

Miguel, Y., Bazot, M., Guillot, T., et al. 2022, Astron. and631

Astrophys., 662, A18632

Militzer, B. 2005, J. Low Temp. Phys., 139, 739633

—. 2006, Phys. Rev. Lett., 97, 175501634

—. 2009, Phys. Rev. B, 79, 155105635

—. 2013, Phys. Rev. B, 87, 014202636

—. 2023a, The Astrophysical Journal, 953, 111,637

doi: 10.3847/1538-4357/ace1f1638

—. 2023b, Quadratic Monte Carlo, 03-08-23, Zenodo,639

doi: 10.5281/zenodo.8038144640

Militzer, B., Gonzalez-Cataldo, F., Zhang, S., Driver, K. P.,641

& Soubiran, F. 2021, Phys. Rev. E, 103, 013203642

Militzer, B., & Hubbard, W. B. 2013, Astrophys. J., 774,643

148644

—. 2023, The Planetary Science Journal, 4, 95,645

doi: 10.3847/PSJ/acd2cd646

Militzer, B., Hubbard, W. B., Vorberger, J., Tamblyn, I., &647

Bonev, S. A. 2008, ApJ, 688648

Militzer, B., Soubiran, F., Wahl, S. M., & Hubbard, W.649

2016, J. Geophys. Res. Planets, 121, 1552650

Militzer, B., Wahl, S., & Hubbard, W. B. 2019, The651

Astrophysical Journal, 879, 78,652

doi: 10.3847/1538-4357/ab23f0653

Militzer, B., & Wilson, H. F. 2010, Phys. Rev. Lett., 105,654

195701655

Militzer, B., Hubbard, W. B., Wahl, S., et al. 2022, Planet.656

Sci. J., in press657

Moll, R., Garaud, P., Mankovich, C., & Fortney, J. J. 2017,658

ApJ, 849, 24, doi: 10.3847/1538-4357/aa8d74659

Moore, K. M., Yadav, R. K., Kulowski, L., et al. 2018,660

Nature, 561, 76, doi: 10.1038/s41586-018-0468-5661

Moore, K. M., Barik, A., Stanley, S., et al. 2022, Journal of662

Geophysical Research: Planets, 127, e2022JE007479,663

doi: https://doi.org/10.1029/2022JE007479664

Morales, M. A., McMahon, J. M., Pierleonie, C., &665

Ceperley, D. M. 2013, Phys. Rev. Lett., 110, 065702666

Morales, M. A., Pierleoni, C., Schwegler, E., & Ceperley,667

D. M. 2010, Proc. Nat. Acad. Sci., 107, 12799668

http://doi.org/10.1126/science.1144835
http://doi.org/10.1016/0019-1035(86)90122-3
http://doi.org/10.1126/science.aal2108
http://doi.org/10.1038/s41586-021-03516-0
http://doi.org/10.1002/2017JE005272
http://doi.org/10.3847/1538-4357/ab698c
http://doi.org/10.3847/1538-4357/aaff65
http://doi.org/10.1093/mnras/stab1566
https://arxiv.org/abs/1609.06324
http://doi.org/10.1038/nature25775
http://doi.org/https://doi.org/10.1016/j.icarus.2022.114937
http://doi.org/10.1051/0004-6361/202245625
http://doi.org/10.1088/0004-637X/768/1/43
http://doi.org/10.1038/nature25793
http://doi.org/10.1029/JA086iA10p08721
http://doi.org/10.3847/1538-4357/ace1f1
http://doi.org/10.5281/zenodo.8038144
http://doi.org/10.3847/PSJ/acd2cd
http://doi.org/10.3847/1538-4357/ab23f0
http://doi.org/10.3847/1538-4357/aa8d74
http://doi.org/10.1038/s41586-018-0468-5
http://doi.org/https://doi.org/10.1029/2022JE007479


24 Militzer and Hubbard

Müller, S., Helled, R., & Cumming, A. 2020, Astronomy669

and Astrophysics, 638, id.A121670

Nettelmann, N., Becker, A., Holst, B., & Redmer, R. 2012,671

Astrophys. J., 750, 52672
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