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Using two first-principles computer simulation techniques, path integral Monte-Carlo and density functional
theory molecular dynamics, we derive the equation of state of magnesium in the regime of warm dense
matter, with densities ranging from 0.43 to 86.11 g cm−3 and temperatures from 20,000 K to 5 × 108 K.
These conditions are relevant for the interiors of giant planets and stars as well as for shock compression
measurements and inertial confinement fusion experiments. We study ionization mechanisms and electronic
structure of magnesium as a function of density and temperature. We show that the L shell electrons 2s and
2p energy bands merge at high density. This results into a gradual ionization of the L-shell with increasing
density and temperature. In this regard, Mg differs from MgO, which is also reflected in the shape of its
principal shock Hugoniot curve. For Mg, we predict a single broad pressure-temperature region where the
shock compression ratio is approximately 4.9. Mg thus differs from Si and Al plasma that exhibit two well-
separated compression maxima on the Hugoniot curve for L and K shell ionizations. Finally we study multiple
shocks and effects of preheat and precompression.

I. INTRODUCTION

The physical properties of hot, dense plasmas have
been studied with a variety of experimental and theoret-
ical techniques.1 Understanding how dense plasmas be-
have is of importance for technologies based upon laser
and particle beams, such as inertial confinement fusion
(ICF),2–5 for the interpretation of high-velocity impact
and shock wave experiments6–8 as well as for the under-
standing of astrophysical processes.9,10 Warm dense mat-
ter (WDM) is a particularly challenging state of matter
to study because it is too dense to be described by plasma
theory that is designed for weakly interacting particles,
but also too hot to be studied with most methods in
condensed matter physics. Condensed matter theory is a
well-established field that can accurately describe solids
and liquids at moderate temperatures, but the treatment
of high temperature conditions becomes increasingly dif-
ficult because many ground-state methods are not well
suited to incorporate partially or completely ionized elec-
tronic orbitals that become relevant because of the ther-
mal ionization. Developing a framework of theoretical
methods or computer simulations that can consistently
and accurately describe the low and high temperature
regimes is, therefore, of high importance. The regime of
WDM includes the deep interiors of planets in our solar
system and that of exoplanets,11,12 where the equation
of state (EOS) of materials in the regime of WDM is
required to model their interior structure and the evolu-
tion.13,14

Magnesium (Mg) is of high importance in geophysics
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because as part of MgO and MgSiO3 it belongs to the fun-
damental building materials in planetary formation.15–17

The properties of these compounds in the WDM regime
have recently been studied with first-principles simula-
tions.18–20 Shock compression experiments on MgO5,16,21

and SiO2,7,22 combined with first principle calculations,
demonstrated that these mantle minerals become electri-
cally conducting in the fluid phase. Super-Earth plan-
ets can thus generate magnetic fields within their man-
tles.23,24

Considerable efforts have also been made to character-
ize the EOS of magnesium at high pressure. This includes
the determination of the phase boundary between the
hcp and bcc solid phases25 and the melting temperature
with shock wave experiments,26–28 which usually require
models that link the Gruneisen parameter to the shock
Hugoniot curve.29 Very recently, Beason el al.30 again
employed shock wave experiments to directly observe the
hcp-bcc transition and melting along the principal Hugo-
niot curve. At the highest shock velocities, the x-ray
diffraction measurements indicate that the temperatures
reached were sufficiently high to melt the sample, which
occurs around 63 GPa on the Hugoniot curve. These
results also indicate that the hcp-bcc phase boundary in-
tersects the Hugoniot above 27 GPa, fully transforming
to bcc by 37 GPa.

The EOS and thermodynamic properties of Mg have
also been investigated with ab initio computer simula-
tions31–34 that have characterized the phase diagram.
Recent calculations of the melting curve have explored
the reentrant melting phenomenon,35 and Mehta et al.36

demonstrated that the choice of the pseudopotential in ab
initio simulations has very little effect on the computed
thermodynamic properties.

Path integral Monte Carlo (PIMC) methods have
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gained considerable interest as a state-of-the-art, stochas-
tic first-principles technique to compute the properties
of interacting quantum systems at finite temperature.
This formalism results in a highly parallel implemen-
tation and an accurate description of the properties of
materials at high temperature where the electrons are
excited to a significant degree.37–41 The application of
the PIMC method to first and second-row elements has
been possible due to the development of free-particle42,43

and Hartree-Fock nodes.44 The latter approach enables
one to efficiently incorporate localized electronic states
into the nodal structure, which extends the applicability
of the path integral formalism to heavier elements and
lower temperatures.45,46 Furthermore, PIMC treats all
electrons explicitly and avoids the use of pseudopoten-
tials. The PIMC simulation time scales as 1/T , propor-
tional to the length of the paths, which is efficient at high-
temperature conditions, where most electrons including
the K shell are excited. Predictions from PIMC simu-
lations at intermediate temperatures have been shown
to be in good agreement with predictions from density
functional theory molecular dynamics (DFT-MD) simu-
lations.47,48

Kohn-Sham DFT49,50 is a first-principles simulation
method that determines the ground state of quantum sys-
tems with high efficiency and reasonable accuracy, which
has gained considerable use in computational materials
science. The introduction of the Mermin scheme51 en-
abled the inclusion of excited electronic states, which ex-
tended the applicability range of the DFT method to
higher temperatures. The combination of this method
with molecular dynamics has been widely applied to com-
pute the EOS of condensed matter, warm dense matter
(WDM), and some dense plasmas.2,52–54 Unless the num-
ber of partially occupied orbitals is impractically large,
DFT is typically the most suitable computational method
to derive the EOS because it accounts for electronic shell
and bonding effects. The main source of uncertainty in
DFT is the use of an approximate exchange-correlation
(XC) functional. The errors resulting from the XC func-
tional often cancel between different thermodynamic con-
ditions. Furthermore this error may only be a small frac-
tion of the internal energy, which besides pressure is the
most relevant quantity for the EOS and the derivation
of the shock Hugoniot curve.55 However, the range of va-
lidity of this assumption in the WDM regime remains
to be verified for different classes of materials through
the comparison with laboratory experiments and other
computational techniques like PIMC simulations.

In this work, we combine the PIMC and DFT-MD sim-
ulation methods to study the properties of magnesium in
the regime of WDM. The combination of both methods
allows us to study a much wider temperature and den-
sity interval and furthermore to test the validity of the
approximations in the methods. We study the regimes
of thermal and pressure ionization of the electronic shells
and provide an equation of state that spans a wide range
of temperatures and pressure. We describe the electronic
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FIG. 1. Temperature-density conditions of our PIMC and
DFT-MD simulations along with computed isobars, isen-
tropes and shock Hugoniot curves that were derived, with
and without radiation effects, for an initial density of ρ0 =
1.73686577 g cm−3. The high-temperature region of ther-
mal ionization is separated by the black dashed line from the
regime of pressure ionization at lower temperatures.

properties of liquid Mg and show how the band gap be-
tween s and p states changes upon compression, and pro-
vide a structural characterization of the liquid. Finally,
we determine the shock Hugoniot curve and explore the
effects of precompression.

II. SIMULATIONS METHODS

We perform first-principles computer simulations of
magnesium for a range of extreme density and tempera-
ture conditions that we illustrate in Fig. 1. At high tem-
perature, we employ PIMC simulations, while at lower
temperatures we use standard Kohn-Sham DFT-MD cal-
culations.

A. PIMC simulations

The fundamental techniques for the PIMC simula-
tions of bosonic systems were developed in Ref. 56
and reviewed in Ref. 42. Subsequently the algorithm
was extended to fermionic systems by introducing the
restricted paths approach.43,57,58 The first results of
this simulation method were reported in the seminal
work on liquid 3He58 and dense hydrogen.59 In subse-
quent articles, this method was applied to study hydro-
gen,60–65 helium,37,47,66 hydrogen-helium mixtures67 and
one-component plasmas.68–70 In recent years, the PIMC
method was extended to simulate plasmas of various first-
row elements2,38,48,71–73 and with the development of
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Hartree-Fock nodes, the simulations of second-row ele-
ments became possible.40,44–46

The PIMC method is based on the thermal density

matrix of a quantum system, ρ̂ = e−βĤ, that is expressed
as a product of higher-temperature matrices by means of

the identity e−βĤ = (e−τĤ)M , where M is an integer
and τ ≡ β/M represents the time step of a path integral
in imaginary time. The path integral emerges when the
operator ρ̂ is evaluated in real space,

〈R|ρ̂|R′〉 =
1

N !

∑
P

(−1)P
∮
R→PR′

dRt e
−S[Rt]. (1)

The sum includes all permutations, P, of N identical
fermions in order project out the antisymmetric states.
For sufficiently small time steps, τ , all many-body corre-
lation effects vanish and the action, S[Rt], can be com-
puted by solving a series of two-particle problems.56,74,75

The advantage of this approach is that all many-body
quantum correlations are recovered through the integra-
tion over paths. The integration also enables one to
compute quantum mechanical expectation values of ther-
modynamic observables, such as the kinetic and poten-
tial energies, pressure, pair correlation functions and the
momentum distribution.42,76 Most practical implementa-
tions of the path integral techniques rely on Monte Carlo
sampling techniques because the integral has D×N ×M
dimensions in addition to sum over permutations (D
is the number of spatial dimensions). The method be-
comes increasingly efficient at high temperature because
the length of the paths scales like 1/T . In the limit
of low temperature, where few electronic excitations are
present, the PIMC method becomes computationally de-
manding and the Monte Carlo sampling can become in-
efficient. Still, the PIMC method avoids any exchange-
correlation approximation and the calculation of single-
particle eigenstates, which are embedded in all standard
Kohn-Sham DFT calculations.

The only uncontrolled approximation within fermionic
PIMC calculations is the use of the fixed-node approxi-
mation, which restricts the paths in order to avoid the
well-known fermion sign problem.43,57,58 Addressing this
problem in PIMC is crucial, as it causes large fluctuations
in computed averages due to the cancellation of positive
and negative permutations in Eq. (1). We solve the sign
problem approximately by restricting the paths to stay
within nodes of a trial density matrix that we obtain from
a Slater determinant of single-particle density matrices,

ρT (R,R′;β) =
∣∣∣∣∣∣ρ[1](ri, r

′
j ;β)

∣∣∣∣∣∣
ij
, (2)

that combines free and bound electronic states,44,46

ρ[1](r, r′;β) =
∑
k

e−βEk Ψk(r) Ψ∗k(r′) (3)

+

N∑
I=1

n∑
s=0

e−βEsΨs(r −RI)Ψ∗s(r′ −RI) . .(4)

The first sum includes all plane waves, Ψk while the sec-
ond represents n bound states Ψs with energy Es that
are localized around all atoms I. Predictions from var-
ious slightly differing forms of this approach have been
compared in Ref. 45.

The PIMC simulations were performed with the CU-
PID code.62 We used periodic boundary conditions and
treated 8 Mg nuclei and 96 electrons explicitly as paths.
We enforced the nodal constraint in small steps of imag-
inary time of τ = 1/8192 Ha−1, while the pair density
matrices77 were evaluated in steps of 1/1024 Ha−1. This
results in using between 1280 and 5 time slices for the
temperature range that was studied with PIMC simula-
tions. These choices converged the internal energy per
atom to better than 1%. We have shown the associ-
ated error is small for relevant systems at sufficiently
high temperatures.78 For example, in Ref. 39, pres-
sure and internal energy from simulations with
8 and 24 nuclei were shown to be in sufficiently
good agreement. This convergence test under-
lines that, with simulations of 8 nuclei, we can
obtain good thermodynamic average of the pres-
sure and internal energy under conditions where
their value are primarily controlled by the ioniza-
tion of the electrons.

B. DFT-MD simulations

Kohn-Sham (KS) DFT-MD,49,50 on the other hand, is
a method used to compute the properties of matter in
the cold and warm dense matter regime. We thus used
the DFT-MD code VASP79 to perform simulations up to
2 million Kelvin to complement the PIMC calculations.
We restricted our DFT-MD calculations to a range of
densities from 6.89 to 51.67 g cm−3(1.6- to 12-fold the
reference density of ρ∗ = 4.3055475 g cm−3). We used
cubic simulation cells with periodic boundary conditions
that, depending on the temperature, contained between
8 and 64 Mg atoms. It has been shown in previous work
that such a small cell is not detrimental to the accuracy
of the EOS data at high temperatures.19,46,73,80 To keep
the temperature constant in a given simulation, we use a
Nosé thermostat.81,82 The time step was adapted to the
density and the temperature, ranging from 0.16 to 0.44
fs for simulation times from 1000 to 16 000 time steps to
ensure a reliable estimation of the thermodynamic quan-
tities.

Our DFT-MD calculations were performed within the
Mermin scheme51 and employed projector augmented
wave (PAW)83 pseudopotentials. From the available
pseudopotentials in the VASP library, we chose a hard
pseudopotential with a 1s2 frozen core and a PAW sphere
radius of 1.75 Bohr radii. To describe the exchange-
correlation effects, we used the Perdew-Burke-Ernzerhof
(PBE)84 functional for the lowest densities, as it has
shown to give good results for MgO.19,23 Since the pro-
vided Mg PBE pseudopotential did not give proper re-
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sults for high densities, we switched to the local density
approximation (LDA). We obtain a very good agreement
between both functionals at 4-fold the reference density
ρ∗ (see section III A). As shown in Ref. 36, the choice
of the pseudopotential in ab initio simulations of Mg has
very little effects on the computed thermodynamic prop-
erties. For very high temperatures, the Mermin approach
requires computation of many excited states with low
occupation numbers. That is why we computed up to
5000 bands, even when we employed reduced cell size of
8 atoms for temperatures above 106 K. This high num-
ber of bands ensured that every band with occupation
fraction of 10−5 or greater was included. For high tem-
perature conditions, the energy cut-off for the plane wave
basis set had to be increased up to 6000 eV. The error
in the total energy due to this band cut-off is less than
0.1%. We sampled the Brillouin zone with the Γ point
only, which was found to be sufficient for the convergence
of the thermodynamic quantities under the conditions of
interest.

III. RESULTS AND DISCUSSION

A. Equation of state

In order to make the internal energies of VASP
DFT-MD simulations compatible with the all-electron
PIMC energies, we shifted the energies generated with
the LDA and GGA functionals by −199.722498 and
−200.011012 Ha per atom, respectively. This shift was
derived by performing all-electron calculations for the
isolated, non-spin-polarized Mg atom with the OPIUM
code85 and comparing the results with corresponding
VASP calculations.

We show the pressure and energy of Mg as a func-
tion of temperature in Fig. 2, relative to an ideal Fermi
gas of electrons and classical nuclei with pressure P0

and internal energy E0, in order to magnify the excess
contributions that result from the particle interactions.
With increasing temperature, these contributions grad-
ually decrease from the strongly interacting condensed
matter regime, where chemical bonds and bound states
dominate, to the weakly interacting, fully ionized plasma
regime.

The DFT-MD results show good agreement between
LDA and PBE calculations at 4-fold the reference den-
sity, ρ∗. No discontinuities are observed in the ther-
modynamic properties when the functional is changed.
As temperature increases, DFT simulations become in-
creasingly inefficient, as the number of partially occupied
orbitals, that have to be explicitly computed, increases
considerably. Around 106 K, PIMC simulations are feasi-
ble, but also computationally demanding. However, they
become more efficient at higher temperatures. For Mg,
we obtained good agreement between PIMC and DFT at
1,347,305 K, as we show in Fig. 2. Near this tempera-
ture, the relative difference in the pressure is less than
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FIG. 2. The temperature dependence of the excess pressure
and internal energy relative to predictions of a noninteract-
ing Fermi gas of electrons and classical nuclei. Every curve
represents a different density, ranging from 2- to 12-fold the
reference density of ρ∗ = 4.305502 g cm−3. The open circles
show the PIMC results at high temperature while the solid
diamonds represent the DFT predictions. With the excep-
tion of the dashed curve for 2-fold ρ∗, the isochores have been
shifted for clarity in steps of +0.01 and +1.0 in the upper and
lower panels, respectively.

4.8%, and the difference in the energy ranges from 2.5
to 7.1 Ha per atom. The largest energy differences occur
at the highest densities, where the frozen cores of DFT
pseudopotential overlap significantly. Overall, however,
the agreement is more than satisfactory.

In Fig. 3, we show the internal energy, E, as a function
of density along three isotherms. We find that all three
E(ρ)T curves have a minimum. With increasing temper-
ature, the location of this minimum shifts towards higher
densities. This minimum in the energy is related to the
following condition for the thermal pressure coefficient,

βV ≡
(
∂P

∂T

)
V

=
P

T
, (5)

which is only satisfied if ∂E
∂ρ

∣∣∣
T

= 0.18 At low density, the
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FIG. 3. Internal energy vs. density curves for three tem-
peratures, specified in the legend. The three stars mark the
energy minima, ∂E/∂V |T = 0, that we use in Figs. 1 and 5
to distinguish between the regimes of thermal and pressure
ionization. The energies of the upper two curves have been
shifted for clarity.

slope ∂E
∂ρ

∣∣∣
T

is negative because the system is more ion-

ized, as we will discuss in the next section. At high den-

sity, the slope ∂E
∂ρ

∣∣∣
T

is positive for two possible reasons.

First, there is the confinement effect, which increases the
kinetic energy of the free electrons and, second, the or-
bitals of the bound electrons hybridize and may even be
pushed into the continuum of free electronic states, which
is commonly referred to as pressure ionization. As pre-
viously,20 we use this energy minimum as a criterion to
distinguish the thermal ionization regime from the pres-
sure ionization regime.

In Fig. 4, we show that the PIMC results converge
to predictions from the classical Debye-Hückel plasma
model86 in the limit of high temperature. For low den-
sities, the agreement is reached at lower temperatures
because there are more particles in the Debye sphere and
the screening approximation is more accurate.47 As ex-
pected, the Debye-Hückel model becomes inadequate for
lower temperatures (T < 8 × 106 K) since it does not
include any bound electronic states. The temperature
range from 2× 106 to 1× 107 K encompasses significant
portions of K shell ionization regime, which is precisely
where the full rigor of PIMC simulations are needed to
acquire an accurate EOS table.

In Fig. 5, we show all EOS points that we computed
in a pressure-temperature diagram. We include the prin-
cipal shock Hugoniot curve that we have discuss in sec-
tion III E. Our entire EOS table is provided as supple-
mentary material to facilitate a comparison with future
experiments and as a benchmark for other faster and
likely more approximate EOS methods.
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FIG. 4. Excess pressure computed with PIMC simulations
compared with the Debye plasma model for the three densities
of 0.1, 2.0 and 20.0 × (ρ∗ = 4.305502 g cm−3).
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FIG. 5. Temperature-pressure conditions for the PIMC
and DFT-MD calculations along isochores corresponding to
the densities of 0.430550 (upper left curve) to 86.110045
g cm−3 (lower right curve). The shock Hugoniot curves with
and without radiation effects were included as well as a num-
ber of isentropes. As in Fig. 1, the high-temperature region of
thermal ionization is separated by the black dashed line from
the regime of pressure ionization at lower temperatures.

B. Degree of Ionization

In this and the two following sections, we report PIMC
and DFT-MD results for the electronic structure of the
magnesium plasma as a function of temperature and
density. We study the ionization of the 1s orbital of
Mg atoms as a function of temperature and explore the
nucleus-electron pair correlation functions. We also show
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how the electronic density of states (DOS) and the 2s-
3p band gap, obtained from DFT-MD simulations, are
affected by temperature, providing further insights into
the temperature-density evolution of ionization effects,
important for continuum lowering.19,46,87,88

In PIMC simulations, a measure of the degree of ioniza-
tion can be obtained from the integrated nucleus-electron
pair correlation function, N(r), given by

N(r) =

〈
1

NI

∑
e,I

Θ(r − ‖~re − ~rI‖)

〉
, (6)

where N(r) represents the average number of electrons
within a sphere of radius r around a given nucleus of
atom of type I. The summation includes all electron-
nucleus pairs and Θ represents the Heaviside function.
Fig. 6 shows the integrated nucleus-electron pair correla-
tion function for temperatures from 1×106 K to 65×106

K and densities from 0.431 g cm−3 (0.1×ρ∗) to 86.11
g cm−3 (20×ρ∗), where ρ∗ = 4.305502 g cm−3 is a ref-
erence density that we chose for convenience. For com-
parison, the N(r) functions of an isolated Mg nucleus
with a doubly occupied 1s orbital is included. Unless
the 1s state is ionized, its contribution will dominate the
N(r) function at small radii of r < 0.2 Bohr radii. For
larger radii, other electronic shells and electron located
near neighboring nuclei contribute also. Still, this is the
most direct approach available to compare the degree of
1s ionization of the nuclei.44

For ρ = 0.1 × ρ∗, there is partial ionization of the 1s
state of the Mg nuclei at 1.0 × 106 K already (see top
left panel of Fig. 6). Ionization at this temperature has
been observed in other single-component plasmas, such
as carbon, oxygen, and silicon80,90 at similar conditions.
In contrast, when Mg is bonded to other chemical species
at a similar density, such as in MgSiO3 or in MgO, partial
ionization of K shell of Mg nuclei typically does not occur
below 2 × 106 K.18,19 However, for temperatures above
4×106 K at this density, the N(r) profile around the Mg
nuclei, hence the degree of ionization, is very similar in
pure Mg, MgO, and MgSiO3. We conclude that the ion-
ization onset of Mg 1s states occurs at lower temperature
for pure Mg than it does in MgO, and MgSiO3 plasma,
where oxygen species provide additional electrons that
can be ionized more easily.

A comparison of theN(r) functions in the upper panels
of Fig. 6 shows that the degree of 1s ionization is reduced
when the density is increased from 0.1 to 1.0×ρ∗. Even
less ionization is observed at higher densities of 4.0 and
20.0×ρ∗, as lower panels show. The degree of 1s ioniza-
tion is consistently reduced with increasing density when
the results are compared for the same temperature. Most
noticeable are the changes in the N(r) function for a tem-
perature of 8.1 × 106 K. For ρ = 0.1 × ρ∗, the 1s states
of the Mg nuclei are essentially fully ionized while there
is a substantial 1s occupation for a density of 20.0× ρ∗.
Fig. 6 also illustrates that temperatures above 32×106 K
are sufficient to fully ionize the system. In this case, the

system behaves similar to an ideal gas and the pressure
and energy scale linearly with temperature. Both depend
weakly on density at these temperatures (see Figs. 2, 4,
and 5).

In Fig. 6, we also show the electron-electron pair cor-
relation functions, g(r), that we derived from our all-
electron PIMC simulations. Without Coulomb interac-
tions, pairs of electrons with opposite spin would be un-
correlated (g(r) = 1 for all r). Also for sufficiently large
separations, any pair of electrons is uncorrelated. How-
ever, for small separations, the pair correlation function
of electrons with alike spin drops to zero, because of
Pauli exclusion. This also remains true in systems with
Coulomb interaction where the electrons are strongly at-
tracted to the nuclei, as we show in Fig. 6. When tem-
perature increases for a given density, the pair correlation
functions decrease and approach eventually to 1, which
shows that the kinetic energy may dominate over the
Coulomb repulsion. An exception are same-spin elec-
tron. Their g(r) will go to zero for small r at any tem-
perature. At low temperature and low density, there is
a very high correlation for both parallel and anti-parallel
spin electrons, which is caused by both types of electrons
occupying bound states of a given nucleus.

C. Electronic Density of States

We also studied the electronic density of states (DOS)
of liquid Mg through the analysis of the eigenenergies
provided by Kohn-Sham DFT. With a Brillouin zone
sampled by the Gamma-point, we obtained smooth DOS
curves by averaging over the MD-simulation snapshots
and applying a Gaussian smearing of 0.1 eV to the band
energies. The DOS at every snapshot was aligned at its
respective Fermi energy, and then we averaged all of them
together. The average Fermi energy was then subtracted
out and the integrated DOS was normalized to 1.

Our average DOS functions, shown in Fig. 7, display
two distinctive peaks at each temperature, representing
bound 2s and 2p electrons of the L-shell, followed by the
2p-3s valence band gap and a continuum of conducting
states, generated by the M-shell (3s) electrons. Since the
pseudopotential of our DFT-MD simulations has a frozen
1s core, these states do not appear in the DOS plots. At
low density, there is also a gap between the 2s and 2p
peaks, which is present up to temperatures of 250 000 K.
For higher temperatures, thermal excitations fill in the
gap in between these two peaks.

Contrary to MgO,19 where the band gap with the con-
tinuum closes completely due to the hybridization of oxy-
gen and magnesium atomic orbitals, we observe that in
pure Mg, the 2p-3s band gap does not disappear with
compression. However, as the density increases and the
atomic orbitals start overlapping, the gap between the
2s and 2p bands does close with compression, causing
these bands to merge and the height of the DOS peaks
to decrease, as more electrons are promoted to the con-
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FIG. 6. Integrated nucleus-electron pair correlation functions, N(r), and electron-electron pair correlation functions, g(r), are
shown for four densities: 0.1, 1.0, 4.0 and 20.0 × (ρ∗ = 4.305502 g cm−3). The temperatures, indicated above the panels, were
chosen to show conditions where these functions show significant change. In columns 2 and 4, we plot the g(r) functions for
pair of electrons with parallel (filled symbols) and anti-parallel spins (open symbols). The N(r) functions in columns 1 and 3
represent the average of number of electrons contained within a sphere of radius, r, around a given nucleus. All curves with
symbols were derived from PIMC simulations. For comparison, we show the corresponding functions with thin dashed lines for
isolated nuclei with doubly occupied 1s core states that we computed with the GAMESS software.89 In the upper left diagram,
the thin dash-dotted lines show the curve for doubly occupied 1s and 2s states.

tinuum. The broadening of the peaks indicates that the
electronic states are less localized because the overlap
between atomic orbitals becomes more significant. The
increasing occupation of continuum states also increases
the internal energy of the system, which may also trig-
ger the effect of pressure ionization that we illustrate in
Fig. 3.

We use vertical lines in Fig. 7 to mark the value of
the chemical potential (or average Fermi energy). At low
temperatures, it is located in the conduction band but
it shifts toward lower energies as temperature increases.
At 500× 103 K and 8.61 g cm−3, the Fermi energy lies in
the middle of the band gap, which would correspond to
an insulator-like behavior if the smearing effects were not
present. In fact, the Fermi smearing at this temperature
is large enough (43.1 eV) to allow partial occupations
in the conduction band, which implies a high electrical
conductivity. If the temperature is increased to 750 ×
103 K at this density, the Fermi energy reaches the 2p
band, which implies that the occupied DOS decreases,
which indicates that there is partial ionization of the 2p
electrons at these conditions.

In Fig. 8, we plot the average number of electrons that
have been promoted to the continuum. We sum up all
band occupations excluding the lowest Ne/2−NI bands.
Ne and NI are the number of electrons and ions in the
cell, respectively. NI is subtracted so that the 3s elec-

trons are part of the continuum in this definition. The
resulting number of electrons per atom in the contin-
uum is equivalent, over the range of conditions explored
here, to the average ionic charge 〈Z〉 that has been used
in Ref. 46. In Fig. 8, we show that there are only 2
electrons per atom in the conduction band for tempera-
tures up to 105 K, which means that no ionization be-
low this temperature is expected at any of the densities
under consideration. For these lower temperatures, the
Fermi energy always lies in the conduction band, as we
showed in Fig. 7. At 2.5 × 105 K and above, the num-
ber of electrons in the conduction band is substantially
larger than 2, which means that the degree of ionization
increases. This number, and hence the degree of ioniza-
tion, increases with decreasing density, and the number
difference between densities is more notorious at higher
temperatures.

In Fig. 9, we show how the 2p-3s band gap observed
in Fig. 7 depends on density and temperature. In the
low-temperature regime up to 250,000 K, we see that
there is a slight decrease in the band gap with increas-
ing temperature at fixed density that we attribute to the
collisions between the nuclei that disorder the local elec-
tronic structure. Around 250,000 K, the band gap at-
tains a minimum and then increases rapidly with tem-
perature, because the degree of ionization increases, as
we observed in Fig. 8. In the upper panel of Fig. 9, we
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FIG. 7. Electronic density of states derived from DFT-MD
simulations is shown for different temperatures and densities.
The vertical bars indicate the value of the average chemical
potential. At low density, separate 2s and 2p peaks can be
identified. With increasing density and temperature, these
peaks broaden and eventually merge. A gap between 2p and
3s bands is seen for all conditions (see Fig. 8). The 3s states
are always part of a broad conduction band.

find that the gap minimum is shifted towards higher tem-
perature as the density is increased, because it is more
difficult to ionize the system at such conditions. Along
the isotherms (lower panel), the band gap decreases with
density if the temperature is sufficiently high but it re-
mains almost constant at low temperatures. Over the
density interval from 2 to 12 ×ρ∗, the band gap changes
by less than 10 eV for temperatures below 2.5 × 105 K,
which represents a change of only 32%. However, as a
function of temperature, the band gap at a given den-
sity can change by more than 70 eV, which represents
an increase of three times its value at low temperatures.
Thus, the valence band gap is more affected by temper-
ature than by compression.

To explain why this transition occurs, we notice that at
temperatures below 2.5×105 K, there is not enough ther-
mal excitation of the 2p states to promote them to the
continuum. The Fermi energy is located in the conduc-
tion band and the energy difference is too high with re-
spect to the 2p states. The bound states are thus not ion-
ized under these conditions. But above 250 000 K there is
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FIG. 8. Average number of electrons per atom in the conduc-
tion band (3s) as a function of temperature and density. This
number increases with increasing temperature and decreasing
density as the average degree of ionization rises. Density axis
has been normalized to a reference density of ρ∗ = 4.3055475
g cm−3.

significant thermal excitation of the 2p states, giving rise
to ionization. In more ionized systems, fewer electrons
screen the charges of the nuclei. The eigenenergies of the
bound states thus decrease because of the lower effective
nuclear charge. As a consequence, the band gap between
the 2p states and the continuum increases.

For temperatures higher than 250 000 K, a density in-
crease forces the 2p states to recombine and the screening
is therefore increased, which results in a decrease of the
gap. The temperature of 250 000 K is a turning point
because the band gap, which is typically about 30 eV,
corresponds to a temperature of 330 000 K. Therefore, it
is expected to have a significant thermal ionization of the
2p levels above this temperature. We observe for instance
at 8.61 g cm−3 (2 ×ρ∗), that the Fermi energy leaves the
conduction band around 2.5 × 105 K, approaching the
2p band with increasing temperature (see Fig. 7). The
occupation of the 2s and 2p bands thus decreases. At
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FIG. 9. Gap between 2p and 3s bands derived from DFT-MD
simulations is plotted as function of temperature and density.
For clarity, the curves in the upper panel have been shifted
vertically by the specified amounts. The open symbols show
gaps from simulations at ρ/ρ∗ = 3 and 5 without electronic
excitations, which we identified as the primary cause for the
gap to increase with increasing temperature and decreasing
density (see Fig. 8). In the upper panel, every curve represents
a different density, normalized to the reference density of ρ∗ =
4.3055475 g cm−3, which also defines horizontal axis of the
lower plot.

750 000 K, the Fermi energy is right above the merged
2s-2p peaks, which corresponds to the point where the
Hugoniot curve has its first peak, as we will discuss in
section III E. By 1.0×106 K the ionization is such that
the Fermi energy lies in between the 2s and 2p peaks
and then goes over the 2s peak at about 1.3×106 K. Al-
though a band gap still exists at these temperatures, the
thermal excitations have ionized the 2s and 2p levels and
promoted almost all L shell electrons to the partially oc-
cupied states of the conduction band.

This picture is consistent with the ionization observed
at much higher temperatures in our PIMC simulations
(see Fig. 6), where the integrated nuclear-electron pair

correlation function N(r) always increased upon com-
pression, reducing the number of electrons in the conduc-
tion band and, hence, increasing the number of electron
in the bounded 1s state. Therefore, we can conclude that
at 2.5×105 K, the hybridized 2s and 2p bands start con-
tributing to the conduction band, while the 1s electrons
do so at 4.0× 106 K.

D. Structure of the fluid

In order to characterize the structure of the fluid, we
analyzed the trajectories of nuclei obtained from the
DFT-MD simulations a function of the density and tem-
perature. With the radial pair correlation function,
gαβ(r), we can measure the local atomic coordination.
This function can be interpreted as the probability of
finding an particle of type α at distance r from a par-
ticle of type β. The nuclear pair-correlation function is
defined as,

gαβ(r) =
V

4πr2NαNβ

〈
Nα∑
i=1

Nβ∑
j 6=i

δ (r − ‖~rij‖)

〉
, (7)

where Nα and Nβ are the total number of nuclei of type α
and β, respectively. V is the cell volume, and ~rij = ~ri−~rj
the separation between nuclei i and j.

In Fig. 10, we compare the different g(r) functions at
selected temperature and density conditions. As temper-
ature increases and density decreases, the particle mo-
tion becomes less correlated and the liquid gradually loses
its structure as the nuclei become more homogeneously
distributed. At close range, a strong repulsion persists
at all conditions, which is the result of Coulomb forces
and Pauli exclusion. These two effects cause the fluid to
freeze into an amorphous solid at the lowest temperature
(20 000 K) and highest density (43.04 g cm−3) under con-
sideration. The black curve in the top panel of Fig. 10
shows a number of additional peaks that are typical of
amorphous samples.91–93 The position of the first peak in
the g(r) function in Fig. 10 does not change much with
temperature. So, the average nearest-neighbor distance
between Mg nuclei is always about 1 Å.

As density decreases, the height of the first peak is
reduced. The peak broadens and shift towards larger
distances. This means that the nearest-neighbor distance
increases, as expected, and that the separation between
atoms covers a wider range of distances. The second and
third peaks indicate the average positions of 2nd and 3rd
nearest neighbors. These peaks are smoothed out with
increasing temperature until there is no signature left
at approximately 500 000 K. Besides the strong short-
range repulsion, there is litte structure left in the liquid
at this temperature. Only at 43.06 g cm−3, the first peak
is still visible. For distances r > 1.4 Å, no correlation
effects are present. Correlations between Mg nuclei up
to 5×105 K have also been observed in MgO19 where the
average nearest-neighbor distance between Mg nuclei is
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FIG. 10. Nuclear pair correlation functions computed with
DFT-MD simulations at different temperatures and densities.
Simulations with 32 atoms were used at 5 × 105 K while 64
atoms were used for lower temperatures. All simulations are
liquid except for one at T=20,000 K and 43.06 g cm−3.

also approximately 1 Å. However, the correlations are
slightly stronger than in pure Mg due to the presence
of oxygen nuclei. Similar correlations effects have been
observed in simulations of MgSiO3

18 where the first peak
in Mg-Mg pair correlation function can still be identified
at 32.08 g cm−3and 250 000 K, which is consistent with
the changes in the electronic structure that we discussed
earlier.

E. Shock Hugoniot Curves

The EOS can be used to infer the conditions reached by
a material when subjected to dynamical shock compres-
sion. Assuming thermodynamic equilibrium is reached
in experiments, the measured shock and particle veloc-
ity can be converted into pressure, density, and energy
through the Rankine-Hugoniot equations.94–96 The en-

ergy conservation equation,

(E − E0) +
1

2
(P + P0)(V − V0) = 0, (8)

is particularly convenient to derive the shock Hugoniot
curve with theoretical methods. Here, E0, V0, and P0

represent the initial conditions of energy, volume, and
pressure, respectively. E, V , and P are the final con-
ditions after the material behind the shock front has
reached a equilibrium state. The shock Hugoniot curves
of many materials have been measured up to megabar,
and in some cases gigabar, pressures.16,52,97,98 Even
at extreme conditions,18,19,41,48,53,54 predictions from ab
initio simulations have been validated.

We solve the Eq. (8) for T and V using a double-
spline interpolation of the computed E(ρ, T ) and P (ρ, T )
in our EOS table (see supplementary material). We
start from the ambient density of solid hcp magnesium,
ρ0 = 1.73686577 g cm−3 (V0 = 23.236914 Å3/atom)
and P0 = PPBE(ρ0) ≈ 0 as initial conditions. De-
pending on whether we compute E(ρ, T ) with the LDA
or PBE functional, two slightly different initial ener-
gies, ELDA

0 = −199.722498 and EPBE
0 = −200.011011

Ha/atom, are used. This is a reasonable choice in order
to minimize the error that arises from choosing a partic-
ular DFT functional. The difference between these two
E0 values is small compared the ∼ 104 Ha/atom that the
internal energy changes along the shock Hugoniot curve
in the temperature interval that we study here. When
we use PIMC values for E, we combine them with EPBE

0

because this approach has worked well in Ref. 45 and 19.
The resulting shock Hugoniot curve has been added to
Figs. 1, 5, 11, and 12.

In Fig. 11, we show the shock Hugoniot curve as a func-
tion of the compression ratio, which spans across a wide
range of pressures. We find a single broader region of
high compression. From 5×105 K (8000 GPa) to 1×107

K (370,000 GPa) the compression exceeds 4.8-fold the
initial density. The maximum compression is approxi-
mately 4.9 ρ0. Already at 200 000 K and 2,200 GPa, the
compression ratio exceeds 4.0, which is the asymptotic
value for a non-relativistic ideal gas. The high compres-
sion ratio in our Mg shock Hugoniot curve is the result
of excitations of internal degrees of freedom,37 which in-
crease the internal energy term in Eq. (8). Consequently,
the second term in this equation becomes more negative,
which reduces the volume V and thus increases the com-
pression ratio. The compression maximum is the result of
L shell ionization that dominates the lower temperature
regime (8×105 K and 16,000 GPa) and K shell ionization
effects that primarily occur around 7×106 K and 230,000
GPa. The shock Hugoniot curves of neon,39 aluminum,46

and silicon40,44 in Fig. 11 show two well-separated com-
pression maxima for the L and K shell ionization and a
minimum in between. We do not see such a minimum
in our Mg Hugoniot curve. Instead, we find a very small
third compression maximum, but that is within the er-
ror bars of our Hugoniot curve computation. We derived
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FIG. 11. The Mg shock Hugoniot curves with and without
relativistic and radiation effects are compared with the Hugo-
niot curves of neon,39 aluminum,46 and silicon.40,44 The com-
pression ratio is given with respect to the initial density of
ρ0 = 1.73686577 g cm−3. One finds a broad temperature in-
terval from 250,000 to 1.6 ×107 K where the compression
ratio of Mg exceeds 4.5, which can be attributed to the ion-
ization of the K and L shell electrons. Without the excita-
tion of K shell electrons the compression ratio decreases for
temperatures above 1.3 × 106 K (blue dot-dashed line). The
pink shaded region shows the uncertainties of the principal
Hugniot curve, which is largest in the region where we switch
between PIMC (circles) and DFT-MD (squares) EOS points.
The horizontal lines show several isotherms.

these error bars by including two effects. First we prop-
agated the 1-σ error bars in the computed pressures and
energies and second, we included the changes that re-
sulted from removing all EOS points at either 1.3 ×106

K or 2.0 ×106 K because we switch between PIMC and
DFT-MD results at these temperatures.

In Fig. 11, the upper maximum compression ratio of
ρ/ρ0 = 4.9 corresponds to a density of ρ = 8.51 g cm−3,
which is equivalent to 2 ×ρ∗ in Fig. 6. At this density,
most of the K shell ionization occurs in the temperature
interval from 4 to 8 ×106 K, which are precisely the con-
ditions of the Hugoniot curve compression maximum. At
temperatures higher than 16×106 K, radiation effects be-
come important and substantially increase the compres-
sion ratio predicted by the Rankine-Hugoniot equations,
allowing compressions beyond 6-fold. The difference is
highlighted by the shaded area in Fig. 11. Radiation ef-
fects have been included by considering an ideal black
body correction to our EOS using Prad = (4σ/3c)T 4 and
Erad = 3V Prad where σ is the Stefan-Boltzmann constant
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FIG. 12. Shock Hugoniot curves with preheat and precom-
pression. In the Hugoniot calculations, the initial density
ρ1 bar
0 = 1.73686577 g cm−3 was modified to simulate the ef-

fects of static precompression. Similarly, the initial internal
energy, ET=0

0 , was modified to simulate the effects of preheat.
The shaded region illustrates the uncertainties of the principal
Hugoniot curve from Fig. 11.

and c is the speed of light in vacuum. The energy correc-
tion drives the increase in compression as we have seen
in case of the K and L shell ionizations. We also studied
the relativistic effects of the free electrons but they only
become relevant for temperatures above 32× 106 K and
do not change the Hugoniot curve as much as radiation
effects do.

In Fig. 12, we study how preheat and a change in the
initial density affect the Hugoniot curve. Both modifi-
cations do not affect in any significant way the upper
compression maximum that is dominated by the ioniza-
tion of K shell electrons. The lower L shell compression
maximum is affected, however. The higher the initial
density the smaller is the peak compression ratio be-
cause particles interact more strongly, which increases
the pressure and thus reduces the compression ratio.37,47

In experiments, a higher initial density may be achieved
with static precompression in diamond anvil cells.99,100

A lower initial density, may be realized by heating the
material or when Mg is part of a compound that has a
lower overall density.

In Fig. 12, we also study the effect of preheat that
we may occur in shock experiments when the laser drive
generates x-rays that, despite shielding, heat the sample
before the shock reaches it. The effects of radiative pre-
heat were studied in detail with hydrocode simulation by
Nilsen et al.101 Here we performed only a simplified anal-
ysis where we simulate the preheat effect by increasing
the initial internal energy E0 by different amounts. An
increase of 10 eV/atom leads to a moderate reduction
in shock compression only. Fig. 12, shows that an in-
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FIG. 13. The amount of shock heating is reduced if multi-
ple shocks are used to compress a material rather than just
one. Here we plot the temperature-pressure stages for experi-
ments with different numbers of shocks. The more shocks are
employed, the closer the results are to an isentrope (thick
grey line). The initial conditions were T = 20 000 K and
P = 733.2 GPa. The final pressure was kept at 58 656 GPa.

crease of 50 eV per atom reduces the L shell compression
maximum significantly. However, for 100 eV/atom, this
maximum is reduced to only a shoulder in the Hugoniot
curve.

Isentropic compression can be thought of as the limit of
infinite number of consecutive small shocks. Less and less
heat is generated when the compression path is broken
up into more and more shocks. In Fig. 13, we compare an
isentrope with various multi-shock Hugoniot curves. All
curves start from 20 000 K, twice the ambient density, and
733 GPa. The isentrope102 was derived from our EOS
table using dT

dV |S = −T dP
dT |V /

dE
dT |V . For weak shocks,

the Hugoniot curve does not deviate very much from an
isentrope. For strong shocks, a substantial amount of
shock heating occurs. The resulting single-shock Hugo-
niot curves are thus much hotter than an isentrope as-
suming both temperatures are compared for the same
final pressure. The difference in temperature depends
significantly on the final pressure. To reach a large final
pressure with a single shock, a substantial contribution
to the pressure must come from the thermal pressure
because final shock density cannot exceed 4.9 times the
initial density (Fig. 11). The purpose of Fig. 13 is to
determine how much shock heating occurs if the shock
is broken up into N = 2–5 steps. In these multi-shock
calculations, we successively solve Eq. 8 to connect the
intermediate shock states. In order to obtain the lowest
possible shock temperature for a given number of shocks,
we keep the final shock pressure fixed while we carefully
adjust the temperatures of the intermediate shocks un-
til we determined the global minimum of the final shock

temperature with sufficient accuracy.
As expected, the resulting multi-shock Hugoniot

curves converge to an isentrope if the number of shocks is
increased. For strong shocks, such as Pfinal/Pinitial ≈ 80,
we find that the temperature of single-shock is 8.3 times
higher than the corresponding temperature on the isen-
trope. The final shock temperature can be reduced to 4.1
times the value in the isentrope if broken up into two. If
three, four or five shocks are employed, the final shock
temperature can, respectively, be reduced to 2.8, 2.3, and
1.9 times the isentropic value. These are substantial re-
ductions compared to the single-shock temperatures.

IV. CONCLUSION

With PIMC and DFT-MD computer simulations, we
have constructed a consistent EOS table for magnesium
over a wide temperature-density range that bridges the
WDM and plasma regimes. Our results provide the first
detailed characterization of K shell ionization in magne-
sium. The ionization of the L shell gradually increases
the compression along the principal shock Hugoniot curve
until it reaches K shell ionization, where the compression
ratio reaches a maximum of 4.9, which is as high as the
maximum compression ratio of pure silicon.

We find good agreement between results from PIMC
and DFT-MD simulations, which provides evidence that
the combination of these two different formulations of
quantum mechanics can be used to accurately describe
WDM. The precision of first-principles computer simula-
tions will guide the design of inertial confinement fusion
(ICF) experiments under conditions where the K and L
shell electrons are gradually ionized, which is challenging
to predict accurately with analytical EOS models.

The analysis of the density of states of magnesium at
high pressures and temperatures led us to conclude that
the 2s and 2p bands merge, as they do in magnesium
oxide, but the band gap with the conduction band re-
mains for all the conditions explored in this work. This
band gap changes significantly with temperature. It de-
creases as temperature increases, until it reaches a min-
imum around 250 000 K, where an increasing number of
electrons start populating the conduction band. Above
this temperature, the band gap considerably increases
with temperature as the atoms become more ionized and
the liquid becomes less structured.

Finally, we found interesting features in the shock
Hugoniot curve that can be attributed to ionization of
electronic shells. The effects of preheating and precom-
pression have significant impact in the predicted shock
temperatures, but do not significantly change the shape
of the curve, unless the preheating is considerably high.
We observed three compression maxima that occur be-
tween 5× 105 and 107 K, which correspond to pressures
between 8000 and 370 000 K GPa. Although the high-
est temperature peak is certainly correlated with the K
shell ionization and the lowest temperature peak to the
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end of L shell ionization, we do not find a physical mech-
anism that explains the intermediate peak. We cannot
rule out the possibility of interpolation or uncertainty ef-
fects in this temperature region, as it corresponds to the
boundary between our PIMC and DFT-MD data. Never-
theless, our prediction of a maximum compression ratio
of ρ/ρ0 = 4.9 is robust. More experiments are required in
order to explore the different ionization regimes predicted
by our calculations.
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18F. González-Cataldo, F. Soubiran, H. Peterson, and B. Militzer,
“Path integral Monte Carlo and density functional molecular
dynamics simulations of warm dense MgSiO3,” Physical Review
B 101, 024107 (2020).
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82S. Nosé, “Constant Temperature Molecular Dynamics Meth-
ods,” Prog. Theor. Phys. Suppl. 103, 1 (1991).
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