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Understanding and designing inertial confinement fusion (ICF) implosions through radiation-
hydrodynamics simulations rely on the accurate knowledge of the equation of state (EOS) of the
deuterium and tritium fuels. To minimize the drive energy for ignition, the imploding shell of DT-
fuel needs to be kept as cold as possible. Such low-adiabat ICF implosions can access to coupled and
degenerate plasma conditions, in which the analytical or chemical EOS models become inaccurate.
Using the path integral Monte Carlo (PIMC) simulations we have derived a first-principles EOS
(FPEOS) table of deuterium that covers typical ICF fuel conditions at densities ranging from 0.002
to 1596 g/cm3 and temperatures of 1.35 eV − 5.5 keV. We report the internal energy and the
pressure, and discuss the structure of the plasma in terms of pair correlation functions. When
compared with the widely used SESAME table and the revised Kerley03 table, discrepancies in
the internal energy and in the pressure are identified for moderately coupled and degenerate plasma
conditions. In contrast to the SESAME table, the revised Kerley03 table is in better agreement with
our FPEOS results over a wide range of densities and temperatures. Although subtle differences still
exist for lower temperatures (T < 10 eV) and moderate densities (1 − 10 g/cm3), hydrodynamics
simulations of cryogenic ICF implosions using the FPEOS table and the Kerley03 table have resulted
in similar results for the peak density, areal density ρR, and neutron yield, which are significantly
different from the SESAME simulations.

PACS numbers: 52.25.Kn, 51.30.+i, 62.50.-p, 64.10.+h

I. INTRODUCTION

Inertial confinement fusion (ICF) has been pursued for
decades since the concept was introduced in 19721. In
the traditional central-hot-spot ignition designs, a cap-
sule of cryogenic deuterium-tritium (DT) covered with
plastic ablator is driven to implode either directly by in-
tense laser pulses2 or indirectly by x-rays in a hohlraum3.
To minimize the driving energy required for ignition, the
imploding DT-capsule needs to be maintained as cold
as possible4 for high compressions (larger than a thou-
sand times that of the solid DT density) at the stag-
nation stage. This can either be done with fine-tuned
shocks5 or with ramp compression waves. The reduction
in temperature leads to pressures in the imploding DT-
shell that are just above the Fermi degeneracy pressure.
This is conventionally characterized by the so-called adia-
bat parameter α = P/PF . Low-adiabat ICF designs with
1 < α < 2 are currently studied with indirect-drive im-
plosions at the National Ignition Facility (NIF)6. Direct-
drive ignition designs5 for NIF also place the DT-shell
adiabat at a low value of 2 < α < 3. Cryogenic DT
targets scaled from the hydro-equivalent NIF designs are
routinely imploded with a direct drive at the Omega laser
facility7.

Since the compressibility of a material is determined
by its equation of state (EOS)8, the accurate knowledge
of the EOS of the DT-fuel is essential for designing ICF
ignition targets and predicting the performance of the
target during ICF implosions. To perform radiation-
hydrodynamics simulations of ICF implosions, one needs
to know the pressure and energy of the DT-fuel and the

ablator materials at various density and temperature con-
ditions, which are usually provided by EOS tables or an-
alytical formulas. Various EOS tables for deuterium have
been assembled because its importance in ICF applica-
tions, planetary science and high pressure physics.

The widely used SESAME EOS table of deuterium9,10

was based upon a chemical model for hydrogen11–14 that
describes the material in terms of well-defined chemical
species like H2 molecules, H atoms and free protons and
electrons. Their interaction as well as many-body and
degeneracy effects are treated approximately. For the
SESAME table, liquid perturbation theory was adopted
in the molecular/atomic fluid phase for ICF plasma con-
ditions. A first-order expansion that only takes into ac-
count nearest neighbor interactions was used in the orig-
inal SESAME table9.

Chemical models are expected to work well in the
regime of weak coupling. However, in ICF implosions,
the DT shell goes through a wide range of densities from
0.1 up to 1000 g/cm3 and temperatures varying from a
few electron volts (eV) to several hundreds of electron
volts2,3, which include plasma conditions with moder-
ately strong coupling. This provides the primary mo-
tivation for this paper, where we derive the deuterium
from first-principles path integral Monte Carlo simula-
tions15–18.

The conditions for a low-adiabat (α ' 2.5) cryogenic
DT implosion on OMEGA are shown in Fig. 1 on pan-
els (a)-(c). Panels (d)-(f) characterize the conditions
for a direct-drive ignition design for NIF that is hydro-
equivalent to the OMEGA implosion. In panels (a) and
(d), we plot the laser pulse shapes. Panels (b) and (e)
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FIG. 1: (Color online) (a)-(c): A cryogenic DT-implosion on
OMEGA with the triple-picket step-pulse; (d)-(f): A direct-
drive ignition design for NIF, scaled from hydro-equivalent
OMEGA implosions. In both cases, strongly coupled and
degenerated plasma conditions are indeed accessed.

show the density, ρ, and temperature, T , path of the
driven DT-shell that we derived with one dimensional
(1D) hydro-simulations using the hydro-code LILAC19.
The DT shell is predicted to undergo a variety of drive
stages including several shocks and the final push by the
main pulse.

The ρ-T path of the imploding DT shell can be pro-
jected onto a plane spanned by the coupling parameter
Γ = 1/(rskbT ) and the degeneracy parameter θ = T/TF .

TF = h̄2

2mekb
× (3π2n)2/3 is the Fermi temperature of the

electrons in a fully ionized plasma and rs is the Wigner-
Seitz radius that is related to the number density of the
electrons, n = 3/(4πr3

s). One finds that the imploding
shells indeed pass through the strongly coupled (Γ > 1)
and degenerate (θ < 1) regimes and one expects cou-
pling and degeneracy effects to play significant roles in
the compression and yield-production in low-adiabat ICF
implosions20.

Strong coupling and degeneracy effects in ICF plasmas
have recently attracted much attention, as they may re-
define the so-called 1D-physics of ICF implosions. The
essential pieces of physics models used in ICF hydro-
simulations, such as the electron-ion energy relaxation
rate21, the thermal conductivity22, the fusion reaction
rate23, and viscosity and mutual diffusion in deuterium-
tritium mixtures24 in coupled and degenerated plasmas
have been re-examined recently with experimental and
theoretical methods. EOS measurements of liquid deu-
terium along the principal Hugoniot reaching about 100-
200 GPa have been performed using laser-driven shock
waves25–30, magnetically driven flyers31,32, and conver-
gent explosives33,34. First-principles computer simula-
tions have emerged as the preferred theoretical tool to

derive the EOS of deuterium under such extreme con-
ditions. Two methods have been most successful: den-
sity functional molecular dynamics (DFT-MD)35–41 and
the path integral Monte Carlo (PIMC)15–18. In contrast
to chemical models, these first-principles methods can
take many-body effects fully into account. Results from
such simulations have also been used to revise the original
SESAME EOS table of deuterium to yield the improved
Kerley03 EOS table10.

For ICF applications, we are especially concerned
about the EOS accuracy along the implosion path in
the density-temperature plane, i.e., in the range of ρ =
0.1−1000 g/cm3 and T = 1−1000 eV. For such high tem-
peratures, standard DFT methods become prohibitively
expansive because of the large number of electronic or-
bitals that would need to be included in the calcula-
tion to account for electronic excitations42. Orbital-
free semi-classical simulation methods based on Thomas-
Fermi theory43 is more efficient but they approximate
electronic correlation effects and cannot represent chem-
ical bonds. Therefore, in current form, they cannot de-
scribe the systems at lower temperatures accurately.

Path integral Monte Carlo has been shown to work
rather well for EOS calculations of low-Z materials such
as deuterium20 and helium44,45. In this paper we present
a first-principles equation of state (FPEOS) table of deu-
terium from restricted PIMC simulations47. This method
has been successfully applied to compute the deuterium
EOS17,46 up to a density of ρ = 5.388 g/cm3. At lower
temperatures, the PIMC results have been shown to
agree well with DFT-MD calculations for hydrogen18 and
more recently for helium45.

Our FPEOS table derived from PIMC covers the whole
DT-shell plasma conditions throughout the low-adiabat
ICF implosions. Specifically, our table covers densities
ranging from 0.002 to 1596 g cm−3 and temperatures of
1.35 eV − 5.5 keV. When compared with the widely used
SESAME-EOS table and the revised Kerley03-EOS ta-
ble, discrepancies in the internal energy and the pressure
have been identified in moderately coupled and degen-
erate regimes. Hydrodynamics simulations for cryogenic
ICF implosions using our FPEOS table and the Kerley03-
EOS table have resulted in similar peak density, areal
density ρR, and neutron yield, which differ significantly
from the SESAME simulations.

The paper is organized as follows. A brief descrip-
tion of the path integral Monte Carlo method is given in
Sec. II. In Sec. III our FPEOS table is presented. In
Sec. IV, we characterize the properties of the deuterium
plasma for a variety of density and temperature condi-
tions in terms of pair correlation functions. Comparisons
between the FPEOS table, the SESAME and the Ker-
ley03 EOS as well as the simple Debye-Hückel plasma
model are made in Sec. V. In Sec. VI, we analyze the
implications of different EOS tables for ICF applications
through hydro-simulations and comparisons with exper-
iments. The paper is summarized in Sec. VII.
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II. THE PATH INTEGRAL MONTE CARLO
METHOD

Path integral Monte Carlo (PIMC) is the appropri-
ate computational technique for simulating many-body
quantum systems at finite temperatures. In PIMC calcu-
lations, electrons and ions are treated on equal footing as
paths, which means the quantum effects of both species
are included consistently, although for the temperatures
under consideration, the zero-point motion and exchange
effects of the nuclei are negligible.

The fundamental idea of the path integral approach is
that the density matrix of a quantum system at temper-
ature, T , can be expressed as a convolution of density
matrices at a much higher temperature, M × T :

ρ(R,R′;β) =

∫
dR1 dR2 · · · dRM−1 ρ(R,R1; ∆β)

× ρ(R1,R2; ∆β) · · · ρ(RM−1,R
′; ∆β).(1)

This is an exact expression. The integral on the right can
be interpreted as a weighted average over all paths that
connect the points R and R′. R is a collective variable
that denote the positions of all particles R = {r1, . . . rN}.
β = 1/kbT represents length of the path in “imaginary
time” and ∆β = β/M is the size of each of the M time
steps.

From the free particle density matrix which can be
used for the high-temperature density-matrices,

ρ
[1]
0 (r, r′;β) = (2πh̄2β/m)−d/2 exp

{
− (r− r′)2

2h̄2β/m

}
, (2)

one can estimate that the separation of two adjacent posi-
tions on the path, ∆r = ri+1−ri can only be on the order

of
√
h̄2∆β/m while the separation of the two end points

is approximately
√
h̄2β/m. One can consequently inter-

pret the positions R1 . . .RM−1 as intermediate points on
a path from R and R′. The multi-dimensional integra-
tion over all paths in Eq. 1 can be performed efficiently
with Monte Carlo methods47.

In general observables associated with operator, Ô, can
be derived from,

〈
Ô
〉

=

∫
dR

∫
dR′ 〈R| Ô |R′〉 ρ(R′,R;β)∫

dR ρ(R,R;β)
, (3)

but for the kinetic and potential energies, EK and EP , as
well as for pair correlation functions only diagonal matrix
elements (R = R′) are needed. The total internal energy
follows from E = EK + EP and the pressure, P , can be
obtained from the virial theorem for Coulomb systems,

P = (2EK + EP )/3V . (4)

V is the volume.

Electrons are fermions and their fermionic characters
matters for the degenerate plasma conditions under con-
sideration. This implies one needs to construct an anti-
symmetric many-body density matrix, which can be de-
rived by introducing a sum of all permutations, P, and
then also include paths from R to PR′. While this ap-
proach works well for bosons47, for fermions each permu-
tation must be weighted by a factor (−1)P . The partial
cancellation of contributions with opposite signs leads to
an extremely inefficient algorithm when the combined po-
sition and permutation space is sampled directly. This is
known as Fermion sign problem, and its severity increases
as the plasma becomes more degenerate.

We deal with the Fermion sign problem by introducing
the fixed node approximation48,49,

ρF (R,R′;β) =
1

N !

∑
P

(−1)P
∫

R→PR′

ρT (R,Rt;t)>0

dRt e
−S[Rt], (5)

where one only includes those paths that satisfy the nodal
constraint, ρT (R,Rt; t) > 0, at every point. S[Rt] is the
action of the path and ρT is a fermionic trial density a
matrix that must be given in analytic form. For this
paper, we rely on free particle nodes,

ρT (R,R′;β) =

∣∣∣∣∣∣
ρ[1](r1, r

′
1;β) . . . ρ[1](rN , r

′
1;β)

. . . . . . . . .
ρ[1](r1, r

′
N ;β) . . . ρ[1](rN , r

′
N ;β)

∣∣∣∣∣∣ .
(6)

but the nodes of a variational density matrix50 have also
been employed in PIMC computations17,44,45.

We have performed a number of convergence tests to
minimize errors from using a finite time step and from
a finite number of particles in cubic simulation cells
with periodic boundary conditions. We determined a
time step of ∆β ≤ [100× kbTF ]

−1
was sufficient to ac-

curately account for all interactions and degeneracy ef-
fects. We perform our PIMC calculations with different
numbers of atoms depending on the deuterium density:
N = 64 atoms for ρ < 2.5 g cm−3, N = 128 atoms for
2.5 < ρ < 10.5 g cm−3. and N = 256 atoms for ρ > 10.5
g cm−3.

III. THE FPEOS TABLE OF DEUTERIUM

We have carried out PIMC calculations for a variety of
density and temperature conditions that are of interests
to inertial confinement fusion applications. The result-
ing FPEOS table for deuterium covers the density range
from 0.0019636 g cm−3 (rs = 14 in units of Bohr radii
a0) to 1596.48802 g cm−3 (rs = 0.15 a0) and the tem-
perature interval from 15 625 K (' 1.35 eV) to 6.4× 107

K (' 5515.09 eV). Fig. 2 shows the conditions for every
simulation combined with lines for Γ = 1 and θ = 1 to
indicate the boundaries between coupled/uncoupled and
degenerate/non-degenerate plasma conditions. Plasma
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FIG. 2: (Color online) The temperature and density condi-
tions covered by the FPEOS table. The gray circles repre-
sent our PIMC calculations, while the shell conditions in ICF
implosions are schematically shown by the region in orange
color. The blue and green lines of θ = 1 and Γ = 1 charac-
terize the boundaries of degeneracy and coupling conditions,
respectively.

conditions in the upper left corner of the diagram are
weakly coupled and classical (Γ � 1 and θ � 1), while
the lower right of the diagram represent strongly coupled
and highly degenerate conditions (Γ � 1 and θ � 1).
The lowest temperatures in our PIMC calculations reach
to the regime of θ ' 0.1.

To give an example for the ICF plasma conditions, we
added the conditions of an imploding DT capsule shown
in Fig. 1 to Fig. 2. It can be seen that the DT shell un-
dergoes a change from strongly coupled to an uncoupled
regime during the shock transits. The electronic condi-
tions change from fully degenerated to partially degener-
ate accordingly. All these conditions are covered by our
PIMC results that we have assembled into the following
FPEOS table I. The pressure and the internal energy
as well as their statistical error bars from PIMC simu-
lations are listed for different density and temperature
conditions.

IV. PARTICLE CORRELATIONS

The correlation functions, g(r), between different pairs
of particles such as electron-electron, electron-ion, and
ion-ion are particularly interesting for analyzing the
physical and chemical changes in the plasma at various
density and temperature conditions. The g(r) are avail-
able directly in PIMC simulations. We first show the
density effects on the structure of the fluid structure by
showing how the g(r) functions change with density for
three temperatures of 15 625 K, 2.5× 105 K, and 2× 106

K in Figs. 3-5.
Fig. 3(a) shows a clear peak in the ion-ion correlation

function, gdd(r), for 0.1 g/cm3 at the molecular bond
length of 1.4 a0. As the density of deuterium increases to
1.0 g/cm3, one observes a drastic reduction in peak height

TABLE I: FPEOS table with pressures and internal en-
ergy per atom for deuterium. The statistical uncertain-
ties from the PIMC simulations are in given in brack-
ets e.g. 0.219(5)=0.219±0.005, 414.4(1.6)=414.4±1.6, or
70230(400)=70230±400.

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 1.96360×10−3g cm−3 [rs = 14.0 a0]

15625 0.001290(8) -10.83(3)

31250 0.003364(8) -2.867(16)

62500 0.009046(8) 11.930(13)

95250 0.014640(8) 21.870(12)

125000 0.019600(10) 30.080(15)

181825 0.028920(8) 45.190(13)

250000 0.040040(12) 63.04(2)

400000 0.06440(2) 102.00(4)

500000 0.08074(2) 128.10(4)

1000000 0.16170(3) 257.30(6)

2000000 0.32390(6) 515.90(10)

4000000 0.64830(14) 1033.0(2)

ρ = 3.11810×10−3g cm−3 [rs = 12.0 a0]

15625 0.002048(14) -10.97(3)

31250 0.005105(14) -3.82(2)

62500 0.013980(12) 10.860(12)

95250 0.022970(11) 21.180(12)

125000 0.030840(15) 29.490(15)

181825 0.045690(13) 44.720(13)

250000 0.063400(19) 62.67(2)

400000 0.10220(4) 101.80(4)

500000 0.12790(3) 127.70(4)

1000000 0.25670(5) 257.10(5)

2000000 0.51440(10) 516.00(10)

4000000 1.0290(2) 1033.0(2)

ρ = 5.38815×10−3g cm−3 [rs = 10.0 a0]

15625 0.00349(2) -11.280(20)

31250 0.00845(2) -4.841(18)

62500 0.02325(2) 9.401(14)

95250 0.038870(19) 20.080(12)

125000 0.05264(3) 28.620(16)

181825 0.07841(2) 44.040(13)

250000 0.10900(3) 62.090(19)

400000 0.17630(7) 101.40(4)

500000 0.22080(7) 127.30(4)

1000000 0.44360(9) 257.00(5)

2000000 0.88830(19) 515.50(11)

4000000 1.7780(4) 1033.0(2)

ρ = 1.05237×10−2g cm−3 [rs = 8.0 a0]

15625 0.00659(5) -11.550(17)

31250 0.01580(6) -5.860(20)

62500 0.04325(4) 7.477(13)

95250 0.07371(4) 18.450(12)

125000 0.10080(5) 27.220(16)

181825 0.15150(4) 42.940(13)

250000 0.21160(7) 61.18(2)

400000 0.34300(13) 100.60(4)

500000 0.43010(13) 126.70(4)

1000000 0.86550(19) 256.50(6)

2000000 1.7350(4) 515.40(11)

4000000 3.4740(8) 1033.0(2)
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TABLE II: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 2.49451×10−2g cm−3 [rs = 6.0 a0]

15625 0.01485(12) -11.820(17)

31250 0.03556(11) -6.948(13)

62500 0.09550(10) 4.773(12)

95250 0.16610(10) 15.740(13)

125000 0.23050(11) 24.790(14)

181825 0.35170(12) 40.920(16)

250000 0.4946(2) 59.40(3)

400000 0.8072(4) 99.19(5)

500000 1.0150(3) 125.40(4)

1000000 2.0480(5) 255.50(6)

2000000 4.1090(9) 514.50(12)

4000000 8.2310(17) 1032.0(2)

ρ = 4.31052×10−2g cm−3 [rs = 5.0 a0]

15625 0.02537(20) -11.970(16)

31250 0.05980(19) -7.537(14)

62500 0.15800(16) 3.087(12)

95250 0.27800(18) 13.820(13)

125000 0.3880(3) 22.910(18)

181825 0.5976(2) 39.250(17)

250000 0.8460(3) 58.01(3)

400000 1.3870(4) 97.96(3)

500000 1.7460(5) 124.40(4)

1000000 3.5310(8) 254.50(6)

2000000 7.0960(13) 513.80(10)

4000000 14.220(3) 1031.0(2)

ρ = 8.41898×10−2g cm−3 [rs = 4.0 a0]

15625 0.0479(7) -12.21(2)

31250 0.1150(5) -8.135(19)

62500 0.2950(6) 1.17(2)

95250 0.5200(6) 11.37(2)

125000 0.7308(7) 20.29(3)

181825 1.1400(6) 36.80(2)

250000 1.6250(9) 55.71(3)

400000 2.6850(11) 96.11(4)

500000 3.3910(11) 122.70(4)

1000000 6.8810(15) 253.30(6)

2000000 13.850(3) 513.00(11)

4000000 27.750(6) 1030.0(2)

ρ = 0.1 g cm−3 [rs ' 3.777 a0]

15625 0.0578(15) -12.21(5)

31250 0.1351(6) -8.351(19)

62500 0.3491(6) 0.74(2)

95250 0.6110(6) 10.690(18)

125000 0.8598(8) 19.57(2)

181825 1.3450(9) 36.08(3)

250000 1.9200(9) 55.00(3)

400000 3.1850(13) 95.67(4)

500000 4.0180(11) 122.10(3)

1000000 8.1680(17) 252.90(5)

2000000 16.440(3) 512.40(11)

4000000 32.970(7) 1030.0(2)

TABLE III: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 0.199561 g cm−3 [rs = 3.0 a0]

15625 0.124(3) -12.31(4)

31250 0.2740(17) -8.91(3)

62500 0.6730(17) -1.11(3)

95250 1.1760(16) 8.14(3)

125000 1.656(2) 16.66(3)

181825 2.6060(15) 32.91(2)

250000 3.753(2) 51.98(3)

400000 6.273(3) 92.85(4)

500000 7.943(2) 119.60(4)

1000000 16.250(5) 251.10(8)

2000000 32.760(7) 510.90(11)

4000000 65.740(14) 1029.0(2)

ρ = 0.306563 g cm−3 [rs = 2.6 a0]

15625 0.219(5) -12.29(5)

31250 0.447(4) -9.15(4)

62500 1.048(4) -1.90(4)

95250 1.781(5) 6.68(5)

125000 2.509(4) 14.98(4)

181825 3.947(3) 30.97(4)

250000 5.693(5) 49.91(5)

400000 9.558(8) 90.87(8)

500000 12.120(6) 117.70(6)

1000000 24.890(9) 249.60(9)

2000000 50.250(13) 509.70(13)

4000000 101.100(19) 1030.0(2)

ρ = 0.389768 g cm−3 [rs = 2.4 a0]

15625 0.298(12) -12.30(10)

31250 0.597(9) -9.21(7)

62500 1.337(8) -2.40(7)

95250 2.280(7) 6.11(6)

125000 3.175(8) 14.09(7)

181825 4.979(11) 29.84(9)

250000 7.206(9) 48.84(7)

400000 12.090(12) 89.61(9)

500000 15.370(14) 116.70(11)

1000000 31.580(14) 248.60(11)

2000000 63.96(2) 509.80(19)

4000000 128.40(3) 1028.0(3)

ρ = 0.506024 g cm−3 [rs = 2.2 a0]

15625 0.42(3) -12.1(2)

31250 0.849(14) -9.16(9)

62500 1.789(12) -2.68(7)

95250 2.954(10) 5.30(6)

125000 4.088(12) 13.02(7)

181825 6.396(10) 28.48(6)

250000 9.243(12) 47.20(7)

400000 15.620(14) 88.25(9)

500000 19.84(3) 115.10(18)

1000000 40.94(3) 247.5(2)

2000000 82.93(3) 508.6(2)

4000000 166.50(4) 1026.0(3)
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TABLE IV: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 0.673518 g cm−3 [rs = 2.0 a0]

15625 0.59(4) -12.02(18)

31250 1.28(2) -8.96(11)

62500 2.461(10) -3.01(5)

95250 3.930(7) 4.43(3)

125000 5.413(6) 11.91(3)

181825 8.446(8) 27.08(4)

250000 12.200(7) 45.63(3)

400000 20.660(14) 86.64(6)

500000 26.270(15) 113.50(7)

1000000 54.300(20) 245.90(9)

2000000 110.20(3) 507.20(16)

4000000 221.60(6) 1026.0(3)

ρ = 0.837338 g cm−3 [rs = 1.86 a0]

15625 0.97(6) -11.3(2)

31250 1.71(2) -8.85(8)

62500 3.17(4) -3.17(14)

95250 5.04(4) 4.30(14)

125000 6.80(3) 11.43(11)

181825 10.52(2) 26.29(9)

250000 15.15(3) 44.67(10)

400000 25.62(4) 85.52(16)

500000 32.67(4) 112.70(17)

1000000 67.44(6) 244.9(2)

2000000 136.90(11) 506.2(4)

4000000 275.50(8) 1026.0(3)

ρ = 1.0 g cm−3 [rs = 1.753 a0]

15625 1.33(7) -11.0(2)

31250 2.22(4) -8.67(12)

62500 3.92(4) -3.23(14)

95250 6.06(4) 3.88(13)

125000 8.16(4) 10.90(11)

181825 12.57(3) 25.60(10)

250000 18.07(3) 43.85(10)

400000 30.36(3) 84.00(9)

500000 38.81(3) 111.30(10)

1000000 80.40(4) 243.90(13)

2000000 163.20(6) 505.00(17)

4000000 328.80(8) 1024.0(3)

ρ = 1.00537 g cm−3 [rs = 1.750 a0]

15625 1.35(9) -10.9(3)

31250 2.23(3) -8.69(10)

62500 4.03(4) -2.97(14)

95250 6.03(5) 3.67(16)

125000 8.27(5) 11.09(14)

181825 12.63(3) 25.56(9)

250000 18.17(4) 43.82(13)

400000 30.54(5) 84.05(16)

500000 38.99(8) 111.2(3)

1000000 80.80(7) 243.7(2)

2000000 164.20(11) 505.3(3)

4000000 330.50(12) 1024.0(4)

TABLE V: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 1.15688 g cm−3 [rs = 1.67 a0]

15625 1.67(11) -10.9(3)

31250 2.78(5) -8.35(14)

62500 4.82(6) -2.87(16)

95250 7.05(6) 3.49(17)

125000 9.65(6) 10.93(17)

181825 14.45(6) 24.77(17)

250000 20.81(5) 42.94(14)

400000 35.12(5) 83.36(13)

500000 44.82(3) 110.50(9)

1000000 92.99(5) 243.30(13)

2000000 189.00(11) 505.0(3)

4000000 380.30(16) 1024.0(4)

ρ = 1.31547 g cm−3 [rs = 1.60 a0]

31250 3.46(9) -7.9(2)

62500 5.65(10) -2.8(2)

95250 8.31(8) 3.75(19)

125000 10.97(6) 10.44(15)

181850 16.66(6) 24.76(14)

250000 23.73(5) 42.50(12)

400000 39.92(7) 82.72(17)

500000 50.66(7) 109.20(17)

1000000 105.50(8) 242.30(20)

2000000 214.20(7) 502.90(16)

4000000 431.80(11) 1022.0(3)

ρ = 1.59649 g cm−3 [rs = 1.50 a0]

31250 4.67(13) -7.5(3)

62500 7.24(12) -2.7(2)

95250 10.53(13) 3.9(2)

125000 13.68(11) 10.4(2)

181850 20.19(7) 23.87(13)

250000 28.78(8) 41.57(15)

400000 48.31(7) 81.53(14)

500000 61.33(10) 107.90(19)

1000000 128.20(11) 241.8(2)

2000000 260.40(15) 503.1(3)

4000000 524.30(13) 1022.0(3)

ρ = 1.96361 g cm−3 [rs = 1.40 a0]

31250 6.4(2) -7.0(4)

62500 9.69(15) -2.1(2)

95250 13.66(14) 4.3(2)

125000 17.11(10) 10.05(16)

181850 25.29(6) 23.68(9)

250000 35.66(9) 41.00(14)

400000 59.23(9) 80.18(15)

500000 75.41(10) 106.90(15)

1000000 156.80(9) 239.50(15)

2000000 319.49(16) 501.2(3)

4000000 644.54(18) 1021.0(3)
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TABLE VI: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 2.45250 g cm−3 [rs = 1.30 a0]

62500 12.61(17) -2.2(2)

95250 18.18(16) 4.9(2)

125000 22.09(15) 10.05(19)

181850 32.63(10) 24.00(13)

250000 45.03(12) 40.55(15)

400000 74.54(10) 79.73(13)

500000 93.88(11) 105.30(14)

1000000 195.60(17) 238.1(2)

2000000 398.20(18) 499.4(2)

4000000 804.2(3) 1020.0(4)

ρ = 3.11814 g cm−3 [rs = 1.20 a0]

62500 18.0(4) -1.4(4)

95250 24.6(3) 5.4(4)

125000 30.1(5) 11.0(5)

181850 43.0(3) 24.4(4)

250000 57.8(4) 39.9(4)

400000 94.9(2) 78.5(2)

500000 120.10(14) 104.70(14)

1000000 248.4(2) 236.7(3)

2000000 504.5(6) 496.7(6)

4000000 1021.0(5) 1018.0(5)

ρ = 4.04819 g cm−3 [rs = 1.10 a0]

62500 26.2(1.1) -0.1(8)

95250 34.4(5) 6.1(4)

125000 41.9(6) 12.1(5)

181850 58.8(6) 25.3(5)

250000 75.8(4) 39.0(3)

400000 125.1(3) 78.5(2)

500000 156.8(2) 103.80(16)

1000000 321.0(3) 234.0(3)

2000000 651.5(7) 492.9(5)

4000000 1327.0(8) 1018.0(6)

ρ = 5.38815 g cm−3 [rs = 1.00 a0]

95250 51.9(1.6) 8.3(9)

125000 61.1(8) 13.7(5)

181850 81.8(1.2) 25.9(7)

250000 105.4(8) 40.0(5)

400000 169.1(1.3) 78.2(7)

500000 212.2(1.3) 104.1(8)

1000000 429.4(1.1) 233.5(6)

2000000 867.4(1.2) 491.5(7)

4000000 1768.0(1.0) 1018.0(6)

ρ = 7.39115 g cm−3 [rs = 0.90 a0]

95250 80(2) 10.3(9)

125000 92(2) 15.5(9)

181850 120(2) 27.4(1.0)

250000 153.4(1.3) 41.9(6)

400000 236.6(1.5) 78.2(6)

500000 297.2(1.2) 104.5(5)

1000000 590.2(1.4) 231.8(6)

2000000 1183.0(1.6) 486.5(7)

4000000 2422.0(1.6) 1015.0(7)

TABLE VII: TABLE I. (Continued.)

Temperature Pressure Internal energy

(K) (Mbar) (eV/atom)

ρ = 10.0000 g cm−3 [rs ' 0.81373 a0]

125000 142(3) 19.0(8)

181850 182(2) 31.8(7)

250000 225.7(1.7) 44.5(5)

400000 334(4) 80.5(1.3)

500000 414.4(1.6) 106.2(5)

1000000 802(2) 230.5(6)

2000000 1596.0(1.6) 483.3(5)

4000000 3276.0(1.6) 1013.0(5)

8000000 6592(3) 2054.0(8)

ρ = 10.5237 g cm−3 [rs = 0.80 a0]

125000 153(7) 19.8(2.0)

181850 197(4) 33.1(1.0)

250000 242(3) 45.4(9)

400000 353(4) 80.4(1.2)

500000 434(4) 105.3(1.1)

1000000 846(3) 231.0(8)

2000000 1681(2) 483.2(7)

4000000 3447(6) 1011.0(1.8)

8000000 6929(3) 2051.0(9)

ρ = 15.7089 g cm−3 [rs = 0.70 a0]

181850 346(9) 40.0(1.7)

250000 419(9) 55.0(1.8)

400000 575(4) 87.1(8)

500000 684(3) 109.3(6)

1000000 1293(4) 233.5(7)

2000000 2515(4) 481.4(9)

4000000 5149(5) 1011.0(1.1)

8000000 10390(5) 2060.0(1.1)

ρ = 24.9451 g cm−3 [rs = 0.60 a0]

400000 1037(12) 98.4(1.4)

500000 1208(17) 121(2)

1000000 2133(11) 239.2(1.4)

2000000 4025(9) 480.9(1.1)

4000000 8195(16) 1009.0(2.0)

8000000 16200(17) 2020(2)

16000000 32950(13) 4124.0(1.6)

ρ = 43.1052 g cm−3 [rs = 0.50 a0]

400000 2212(30) 123(2)

500000 2523(20) 146.5(1.8)

1000000 4002(30) 256.4(2.0)

2000000 7162(18) 490.2(1.3)

4000000 14180(17) 1006.0(1.3)

8000000 28390(30) 2044(2)

16000000 56880(20) 4118.0(1.7)

32000000 114000(40) 8273(3)

64000000 227900(90) 16540(7)

ρ = 84.1898 g cm−3 [rs = 0.40 a0]

1000000 9169(50) 298.4(2.0)

2000000 14950(80) 517(3)

4000000 27960(70) 1007(3)

8000000 54980(40) 2019.0(1.4)

16000000 110600(70) 4093(3)

32000000 222600(120) 8262(4)

64000000 445900(110) 16570(4)
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TABLE VIII: TABLE I. (Continued.)

Temperature Pressure Internal-energy

(K) (Mbar) (eV/atom)

ρ = 199.561 g cm−3 [rs = 0.30 a0]

2000000 41350(800) 597(12)

4000000 70230(400) 1056(6)

8000000 129900(500) 2000(8)

16000000 263400(300) 4104(5)

32000000 527000(400) 8247(7)

64000000 1049000(400) 16450(7)

ρ = 673.518 g cm−3 [rs = 0.20 a0]

4000000 299900(4000) 1322(16)

8000000 504200(3000) 2281(15)

16000000 897500(1300) 4121(6)

32000000 1783000(1700) 8251(8)

64000000 3569000(1600) 16560(7)

ρ = 1596.49 g cm−3 [rs = 0.15 a0]

4000000 1071000(20000) 2002(40)

8000000 1555000(20000) 2961(40)

16000000 2342000(17000) 4517(30)

32000000 4565000(16000) 8890(30)

64000000 8523000(8000) 16670(17)

FIG. 3: (Color online) The pair correlation functions g(r)
derived from PIMC calculations: (a) the ion-ion correlation
gdd(r); (b) the ion-electron correlation gde(r); (c) the electron-
electron correlation geep(r) for parallel spins; (d) the electron-
electron correlation geea(r) for anti-parallel spins, with differ-
ent densities at 15 625 K.

which demonstrates the pressure-induced dissociation of
D2 molecules, confirming earlier PIMC results46,51. This
interpretation is also supported by the reduction of peak
at r = 0 in the gde(r) function in Fig. 3(b). Furthermore
the positive correlation between pair of electrons with
anti-parallel spin in Fig. 3(d) is also disappearing with
increasing density since they are no longer bound into
molecules. Fig. 3(c) shows that there is always a strong

FIG. 4: (Color online) Pair correlation functions similar to
Fig. 3 but at a higher temperature of 2.5×105 K and densities
from 1.0 to 15.709 g/cm3.

FIG. 5: (Color online) Pair correlation functions similar to
Fig. 3 but at a higher temperature of 2× 106 K and densities
from 24.945 to 199.56 g/cm3.

repulsion between electrons with parallel spins because
of the Pauli exclusion principle but they approach each
other more at higher densities.

Figs. 4 and 5 show the pair correlation functions
for different densities at much higher temperatures of
2.5 × 105 K and 2 × 106 K. At these temperatures, D2

molecules have completely dissociated as indicated by the
absence of the peak in the ion-ion correlation function.
The attractive forces between pair of ions have disap-
peared and repulsion now dominates their interactions.
At higher densities, particles are “packed” more tightly
and approach each other significantly more so that the
g(r) rise up more steeply and reach the values of 0.5 as
much smaller distances.

In Fig. 6, we compare the pair correlation functions for
the fixed density of 10 g/cm3 for temperatures ranging
from 1.25× 105 K to 2× 106 K. It is interesting to note
there is relatively little variation between the three curves
below the Fermi temperature of TF = 8.8 × 105 K but
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FIG. 6: (Color online) Pair correlation functions similar to
Fig. 3 at a fixed density of 10.0 g/cm3 for temperatures rang-
ing from 1.25× 105 K to 2× 106 K.

they differ significantly at 2 × 106 K. This is a manifes-
tation of Fermi degeneracy effects in which the electrons
approach the ground state for temperatures well below
the Fermi temperature. Then much of the temperature
dependence of the pair correlation functions disappears.
For example the pair correlation functions of electrons
with anti-parallel spins are almost identical for the two
lowest temperatures of 1.25× 105 K and 2.5× 105 K but
they differ substantially from results at well above TF .
When the temperature raises above TF , Pauli exclusion
effects are reduced, the electrons start to occupy a vari-
ety of states, which then has a positive feedback on the
mobility of the ions.

V. COMPARISONS OF THE FPEOS TABLE
WITH SESAME AND KERLEY03 MODELS

In this section, we compare the pressures and internal
energies in our FPEOS table with predictions from the
well-known semi-analytical SESAME and Kerley03 EOS
tables. To illustrate how much the system deviates from
an ideal plasma, we have normalized both pressure and
energy to their corresponding values [Eid and Pid] of non-
interacting gas of classical ions and fermionic electrons.
This removes most of the temperature dependence and
emphasizes the effects of the Coulomb interaction, which
leads to a reduction in pressure and energy below the
non-interacting values in all cases.

In Figs. 7−9, we plot the pressure and the internal
energy as a function of density for different temperatures
ranging from 31250 to 4×106 K. Figs. 10−13 show them
as function of temperature for different densities varying
between 0.1 and 84.19 g/cm3.

In Fig. 7, we compare FPEOS, SESAME, and Kerley03
results at a comparatively low temperature of 31250 K.
This is difficult regime to describe by chemical mod-
els because the plasma consists of neutral species like

FIG. 7: (Color online) The comparisons of pressure (a) and
internal energy (b) as a function of density from the the
FPEOS, SESAME, Kerley03 tables. The error bars indicate
the 1σ statistical uncertainty in the PIMC simulations. Re-
sults were normalized to non-interacting gas of classical ions
and fermionic electrons.

molecules and atoms as well as charged particles such as
ions and free electrons. The interaction between neutral
and charged species is very difficult analytically while
it poses no major challenge to first-principles simula-
tions. As is shown by Fig. 7(a), the SESAME EOS
predicts overall higher pressures at low density (ρ ≤ 0.3
g/cm3) but then all three models come to agree with each
other at higher densities. The improved Kerley03 table
still showed some discrepancy at very low densities, even
though some improvements to the ionization equilibrium
model have been made10.

Fig. 7(b) shows that the internal energies predicted
by SESAME and Kerley03 are overall lower than the
FPEOS values. The higher the density, the more dis-
crepancy there is. Again, this manifests the difficulty of
chemical models at such plasma conditions.

One expects the pressure and internal energy to ap-
proach the values of a non-interacting gas in the low-
density and the high-density limit. At low density, parti-
cles are so far away from each other that the interaction
effects become negligible. At high density, Pauli exclu-
sion effects dominate over all other interactions and all
thermodynamic function can be obtained from the ideal
Fermi gas. Just at an intermediate density range which
still spans several orders of magnitude, the Coulomb in-
teraction matters and significant deviations for the ideal
behavior are observed.

For a higher temperature of 2.5 × 105 K, the pres-
sure and energy are compared in Fig. 8. The low-density
deuterium at this temperature becomes fully ionized and
can therefore be described by the Debye-Hückel plasma
model52, which is based on the self-consistent solution of
the Poisson equation for a system of screened charges.
The pressure and energy per particle (counting electrons
and ions) can be explicitly expressed as:

PD = Pid −
kbT

24πλ3
D

and ED = Eid −
kbT

8πnλ3
D

, (7)
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FIG. 8: (Color online) Same as Fig. 7 but for a different
temperature 2.5 × 105 K. The Debye-Hückel model is also
shown for comparison.

with the particle number density n, the Boltzmann con-
stant kb, and the Debye length λD =

√
kbT/4πne2.

We have added the Debye-Hückel results to Figs. 8-13.
In Fig. 8 one finds that the simple Debye-Hückel model
perfectly agrees with our PIMC calculations in the lower
densities up to 0.1 g/cm3, where the improved Kerley03
EOS also gives very similar pressures and energies. On
the other hand, the SESAME EOS overestimates both
pressure and energy even at such low densities.

Fig. 8(a) exposes an artificial cusp in pressure in Ker-
ley03 EOS at densities of 1.5−4 g/cm3 while the internal
energy curve is smooth. This artificial pressure cusp ap-
pears for all temperatures at roughly the same density
and may be related to the artificial double compression
peaks in the principal Hugoniot predicted by Kerley03
EOS10. The Debye-Hückel model fails at densities higher
than 0.2 g/cm3 for this temperature. It is only applica-
ble to weakly interacting plasmas but otherwise predicts
unphysically low pressures and energies.

As the temperature increased to 4×106 K, the Debye-
Hückel model agrees very well with FPEOS in both pres-
sure and energy over a wide range of densities up to 20
g/cm3 as shown in Fig. 9. Significant differences in both
pressure and energy are again found for the SESAME
EOS, when compared to FPEOS and Kerley03 tables. It
should also be noted that the internal energy predicted
by Kerley03 is slightly lower than those of FPEOS and
the Debye-Hückel model for ρ = 0.1− 20 g/cm3.

In Figs. 10−13, we compare the pressure and energy
versus temperature for specific densities of 0.1, 1.0, 10.0,
84.19 g/cm3. At high temperature where the plasma is
fully ionized, the Debye-Hückel model well reproduces
the FPEOS pressures and energies very well. It is in-
teresting to note that the SESAME table overestimates
the pressure and energy even for a fully ionized plasma at
densities greater than 1.0 g/cm3 as shown in Figs. 11−13.
For a very low density of 0.1 g/cm3, Fig. 10 shows that
the improved Kerley03 agrees very well with FPEOS,
while the SESAME results are noticeably higher. More-
over, the improvements made to Kerley03 have resulted
in remarkable agreement with FPEOS for intermediate

FIG. 9: (Color online) Same as Fig. 7 but for a different
temperature of 4× 106 K.

FIG. 10: (Color online) Pressure (a) and energy (b) as a func-
tion of temperature from FPEOS, SESAME, and Kerley03
tables for deuterium density of 0.1 g/cm3.

densities of 0.1 and 10.0 g/cm3 depicted by Figs. 11 and
12. Only a small deviation in the internal energy be-
tween Kerley03 and our FPEOS results can be found at
the lowest temperature for 1.0 g/cm3.

At a higher density of 84.19 g/cm3, the SESAME EOS
again significantly deviates from both the FPEOS and
the Kerley03 EOS as is illustrated by Fig. 13. The lat-
ter two EOS tables give very similar results in internal
energy almost for the entire temperature range, though

FIG. 11: (Color online) Same as Fig. 10 but for a different
deuterium density of 1.0 g/cm3.
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FIG. 12: (Color online) Same as Fig. 10 but for a higher
deuterium density of 10.0 g/cm3.

FIG. 13: (Color online) Same as Fig. 10 but for much higher
deuterium density 84.19 g/cm3.

the pressures predicted by Kerley03 are higher than the
FPEOS ones for temperatures varying from 2× 106 K to
2× 107 K. In contrast to the significant EOS differences
seen from SESAME, the improved Kerley03 table is over-
all in better agreement with the FPEOS table, although
subtle discrepancies and an artificial pressure cusp still
exist in the Kerley03 EOS.

VI. APPLICATIONS TO ICF

With the EOS comparisons discussed above, we now
investigate what differences can be observed when these
EOS tables are applied to simulate ICF shock timing
experiments and target implosions. Using radiation-
hydrodynamics codes, both one-dimensional LILAC19

and two-dimensional DRACO53, for simulations of ex-
periments, we can explore the implications of our first-
principles equation of state table for the understanding
and design of ICF targets.

We first study the shock timing experiments54,55 per-
formed on the Omega laser facility. As the fuel entropy in
ICF implosions is set by a sequence of shocks, the timing
of shock waves in liquid deuterium is extremely impor-
tant for the ICF target performance. In shock timing
experiments, the carbon deuterium (CD) spherical shell,

FIG. 14: (Color online) (a) The triple-picket pulse shape for
shock-timing experiments using cryogenic deuterium; and (b)
the measured shock speed in liquid-D2 (black solid-line) com-
paring with hydro-dynamics predictions using the SESAME,
FPEOS, Kerley03, and QEOS models.

900 µm in diameter and 10 µm thick, in a cone-in-shell
geometry54 were filled with liquid deuterium. VISAR
(velocity interferometery system for any reflector) was
used to measure the shock velocity. As is shown in
Fig. 14(a), the triple-picket laser pulses are designed to
launch three shocks into the liquid deuterium. The ex-
perimental results are plotted in Fig. 14(b), in which the
shock front velocity is shown as a function of time. One
finds that when the second shock catches up the first
one at around 1.5 ns, the shock-front velocity exhibits
a sudden jump. Another velocity jump at 2.2 ns oc-
curs when the third strong shock overtakes the previous
two. With the hydro-code LILAC, we have simulated the
shock timing experiments using different EOS tables in-
cluding FPEOS, SESAME, Kerley03, and QEOS56. The
radiation hydro-simulations have used the standard flux-
limited (f = 0.06) thermal transport model, although
a nonlocal model has resulted in better agreement with
experiment for the speed of first shock55. The results of
FPEOS, SESAME and Kerley03 are in good agreement
with the experimental observation, while the QEOS pre-
dicts s much lower shock velocity and early catching up
time. The shock timing experiments can only explore a
small range of deuterium densities (0.6−2.5 g/cm3) and
temperatures (3−10 eV). In these plasma conditions the
SESAME and Kerley03 have been adjusted10 to match
to the first-principles calculations, which can be seen in
Fig. 11. Thus, the shock velocity differences predicted
by the FPEOS, SESAME, and Kerley03 are very small
in such plasma conditions.

Next, we examine the implications of coupling and
degeneracy effects in ICF implosions. The possi-
ble differences in target compression and fusion yields
of ICF implosions are investigated through radiation
hydro-simulations using FPEOS in comparison to re-
sults predicted by SESAME and Kerley03. The LILAC-
simulation results are compared in Figs. 15 and 16, re-
spectively, for a DT implosion on OMEGA and a hydro-
equivalent direct-drive design on the NIF. In Figs. 15(a)
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and 16(a), we plot the laser pulse shapes consisting of
triple-pickets and the step-main-pulse. The cryogenic
OMEGA DT target (860 µm diameter) has a 10-µm
deuterated plastic ablator and ∼ 65 µm of DT ice. Fig-
ure 15(b) shows the density and temperature profiles at
the end of the laser pulse (t = 3.8 ns) from the FPEOS
(red/solid line), the SESAME (green/dashed line), and
the Kerley03 (blue/dot-dashed line) simulations. AT this
time the shell has converged to a radius of ∼ 160 µm from
its original radius of ∼ 430 µm. The shell?s peak den-
sity and average temperature were ρ ' 5.6 g/cm3 and
T ' 21 eV, which correspond to the coupled and degen-
erate regimes with Γ ' 1.22 and θ ' 0.47. It is shown
that the FPEOS simulation predicted ∼ 10% lower peak
density but ∼ 15% higher temperature relative to the
SESAME prediction. As is shown by the comparisons
made in Fig. 8 and in Ref. [20], the FPEOS predicts
slightly stiffer deuterium than SESAME at the similar
temperature regime. This explains the lower peak den-
sity seen in Fig. 15(b). The ∼ 15% higher tempera-
ture in the FPEOS case was originated from the lower
internal energy [see Fig. 8(b)]. Since the laser abla-
tion does the same work/energy to the shell compres-
sion and its kinetic motion, a lower internal energy in
FPEOS means more energy is partitioned to heat the
shell, thereby resulting in a higher temperature. Such a
temperature increase and density drop can have conse-
quences in the implosion performance. Despite the sub-
tle EOS differences discussed above, the Kerley03 simula-
tion show very similar results when compared to FPEOS.
Only small differences in temperature profile can be seen
between the FPEOS and Kerley03 simulations, both of
which are in remarkable contrast to the SESAME case.
Figure 15(c) show the density profile at the peak com-
pression, in which the predicted peak density (ρp ' 210
g/cm3) is ∼ 25% lower according to FPEOS and Ker-
ley03 compared to the SESAME prediction (ρp ' 260
g/cm3). The history of areal density ρR-evolution and
neutron production were shown in Fig. 15(d). One sees
that the peak ρR and neutron yield are also reduced by
∼ 10% - 20% when the FPEOS and Kerley03 are com-
pared to the SESAME predictions. The absolute neutron
yield drops from ∼ 8.44× 1013 predicted by SESAME to
∼ 6.91× 1013 (FPEOS) and ∼ 6.93× 1013 (Kerley03).

Figure 16 shows the similar effects for the hydro-
equivalent direct-drive NIF design with 1-MJ laser en-
ergy. The NIF target (φ = 2.954-mm) consists of 27-µm
plastic ablator and 170-µm DT ice. The triple-picket
drive pulse has a total duration of ∼ 11.4 ns and a peak
power of ∼ 240-TW. We also found a decrease in ρp and
a slight temperature increase for the FPEOS and Ker-
ley03 relative to SESAME simulations near the end of the
laser pulse (t = 9.2 ns), shown by Fig. 16(b). The peak
density at the stagnation dropped from 481 (SESAME)
to ∼ 445 g/cm3 (FPEOS/Kerley03), which is indicated
by Fig. 16(c). The resulting ρR and neutron yield as
a function of time is plotted in Fig. 16(d). The yield
dropped from the SESAME value of Y ' 1.75× 1019 to

FIG. 15: (Color online) The hydro-code simulations of a cryo-
genic DT implosion on OMEGA using the three different EOS
tables including SESAME, FPEOS, and Kerley03: (a) The
laser pulse shape; (b) The density-temperature profiles of the
imploding DT shell at the middle of main laser pulse (t = 3.8
ns); (c) the density profile at the peak compression (t=4.26
ns); and (d) the areal density ρR and yield as a function of
time.

FIG. 16: (Color online) Similar to Fig. 15 but for a hydro-
equivalent direct drive, 1 MJ ignition design for NIF.

Y ' 1.57 × 1019 (FPEOS) and Y ' 1.55 × 1019 (Ker-
ley03). Consequently, the energy gain decreased from
49.1 (SESAME) to 44.2 (FPEOS) and 43.8 (Kerley03).
It is noted that the ∼ 11% gain reduction for this design
is much modest than the 1.5-MJ NIF design discussed in
Ref. [20] in which more than ∼ 20% gain difference has
been seen between FPEOS and SESAME simulations.
This is attributed to the different density-temperature
trajectories that the two designed implosions undergo, in
which the EOS variations among FPEOS, SESAME and
Kerley03 are different.
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FIG. 17: (Color online) The density contour plots at t=3.85
ns from two-dimensional DRACO simulations of the OMEGA
cryogenic DT-implosion shown in Fig. 15, respectively using
the SESAME (a) and the FPEOS (b) for the fuel DT. It
is noted that the various perturbation sources have been in-
cluded up to mode l = 150.

Finally, we discuss the implications of the coupling and
degeneracy effects in FPEOS to ICF target performance
beyond the 1D physics studied above. As we knew that
various perturbations seeded by target roughness and
lasers can grow via the Rayleigh-Taylor (RT) instability57

during the shell acceleration/deceleration phases in ICF
implosions, it is important to properly simulate the RT
growth of fusion fuel for understanding target perfor-
mance (compression and neutron yields)58,59. Since the
RT growth depends on the compressibility of materi-
als, the accurate equation-of-state of deuterium is essen-
tial to ICF designs. As an example, we have used our
two-dimensional radiative hydro-code DRACO to simu-
late the cryogenic DT implosion on OMEGA [discussed
in Fig. 15]. The various perturbation sources, includ-
ing the target offset, ice roughness, and laser irradiation
non-uniformities measured from experiments, have been
taken into account up to a maximum mode of l = 150.
We have compared the FPEOS and SESAME simulation
results in Fig. 17 for t = 3.85 ns near the end of ac-
celeration, in which the density contours are plotted in
the ZR-plane (azimuthal symmetry with respect to the
Z-axis is assumed). Visible differences in the DT shell
density can even be seen by eye from Figs. 17(a) and (b).
The FPEOS simulation resulted in more “holes” and den-
sity modulations along the shell than the SESAME case.

To further analyze the perturbation amplitudes, we
have decomposed the ablation-surface modulations into a
modal spectrum that is shown in Fig. 18(a), at the start
of shell acceleration (t=3.0 ns). We find that the FPEOS
predicted larger amplitudes than the SESAME case al-
most over the entire modal range. As the deuterium
Hugoniot was shown in Ref. [20], the FPEOS predicted
softer deuterium compared to SESAME for pressures be-
low ∼ 2 Mbar. Thus, the softer deuterium can be more
easily “imprinted” by the perturbations brought in via
the series of shocks. This results in larger perturbation
amplitudes in FPEOS than SESAME simulations. The
Rayleigh-Taylor instability further amplifies these per-

FIG. 18: (Color online) (a) The modal spectrum of pertur-
bation amplitude at the ablation surface for t ' 3.0 ns (the
beginning of acceleration); (b) The perturbation growth in
ρR as a function of time, analyzed from the 2D-DRACO sim-
ulations shown in Fig. 17.

turbations during the shell acceleration. As indicated by
Fig. 18(b), the σrms of fuel ρR modulation increases to
a few mg/cm2 at the end of the laser pulse. These per-
turbations penetrated into the inner surface of the DT-
shell will become the seeds for further RT growth during
the shell’s deceleration phase. They eventually distort
the hot-spot temperature and density, thereby reducing
the neutron production. At the end, we found that the
SESAME simulation resulted in a neutron-averaged ion
temperature of 〈Ti〉 = 2.6 keV and a neutron yield of
Y = 5.2×1012; while due to the larger perturbations pre-
dicted the FPEOS simulation has given an 〈Ti〉 = 2.3 keV
and neutron yield of Y = 3.7× 1012, which is more close
to experimental observations of 〈Ti〉 = 1.8± 0.5 keV and
Y = 1.9× 1012.

VII. SUMMARY

In conclusion, we have derived a first-principles equa-
tion of state table of deuterium for ICF applications from
PIMC calculations. The derived FPEOS table covers
the whole plasma density and temperature conditions
in low-adiabat ICF implosions. In comparison with the
chemical model based SESAME table, the FPEOS table
show significant difference in internal energy and pres-
sure for coupled and degenerate plasma conditions; while
the recently improved Kerley03 table exhibited fewer and
smaller discrepancies when compared to the FPEOS pre-
dictions temperature higher than ∼ 10-eV. Although
subtle differences at lower temperatures (T < 10 eV) and
moderate densities (1 − 10 g/cm3) have been identified
and an artificial pressure cusp still exists in the Kerley03
table, radiation hydro-simulations of cryogenic ICF im-
plosions using the FPEOS and Kerley03 tables have given
similar peak density, areal density ρR, and neutron yield,
which are remarkably different from the SESAME sim-
ulations. Both the FPEOS and the Kerley03 predicted
∼ 25% less peak density, ∼ 10% smaller ρR, and ∼ 10%-
20% less neutron yield, when compared to the SESAME
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case. Two-dimensional simulations further demonstrated
the significant differences in target performance between
the FPEOS and SESAME simulations. In general, the
FPEOS simulations resulted in better agreement with
experimental observations in terms of ion temperature
and neutron yield. It is also noted that the extreme
conditions covered by the FPEOS table are also impor-
tant in astrophysics and planetary sciences, for example,
to model the evolution of stars60 and to understand the
thermodynamical properties of stellar matter61.
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