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Abstract

We have performed all-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics
(DFT-MD) calculations to explore properties of first- and second-row materials in the liquid, warm dense matter, and
plasma regimes. Our simulations have covered a wide density-temperature range of roughly 1−15 g cm−3 and 104−109 K).
We first analyze the ionization behavior of carbon and water plasma. Then we provide a comparative analysis of the
pair-correlation functions and Hugoniot curves of He, C, N, O, Ne, and Si plasmas. Pair-correlation functions give insight
into the evolution of plasma structure and ionization processes that are driven by changes in temperature and density.
Finally, we show that the maximum shock compression of a material is controlled by the ionization of L-shell and K-shell
electrons and depends strongly on this as a function of the atomic number of the material.
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1. Introduction

A rigorous and consistent theoretical description of ma-
terials residing in the high energy density physics (HEDP)
and warm dense matter (WDM) regimes has been identi-
fied [1, 2, 3] as a central goal to the development of key
plasma technologies, such as inertial and magnetically con-
fined fusion, shock physics, high energy astrophysics, and
stockpile stewardship. Some of the most important pieces
of information theoretical calculations can provide include
the equation of state (EOS), pair-correlation functions,
and transport and optical properties. These quantities
provide fundamental information from which many other
physical properties can be derived and, subsequently, used
to build theoretical models and design HEDP experiments.
For example, the design of a fusion experiment [4] relies
heavily on understanding how plasma constituents evolve
with temperature and density in order to optimize ignition
parameters. In addition, knowledge of the plasma depen-
dence on temperature and density provides key constraints
on input parameters in hydrodynamic simulations, which
are critical in the designs of experiments.

Development of a comprehensive first-principles frame-
work that can accurately and reliably predict plasma prop-
erties across the entire WDM regime remains a significant
challenge. While semi-analytic plasma models [5] are suf-
ficient for describing weak-to-moderate coupling regime,
first-principles-based methods, such as path integral Monte
Carlo (PIMC) [6], orbital-free density functional theory
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(OF-DFT) [7, 8, 9], and average-atom methods [10, 11,
12], are needed to accurately address the strong coupling
regimes along the pathway to fusion. In the WDM regime,
materials are only partially ionized, and electrons are still
strongly correlated such that quantum effects (quantum
degeneracy, ionization, and dissociation) are all relevant
for determining plasma properties [13].

PIMC is uniquely suited to provide benchmark-quality
predictions in the WDM regime, because it is the only
method which is able to treat all of the quantum effects
appropriately by solving the full finite-temperature quan-
tum many-body problem. The challenge in PIMC is to
further develop the technique for simulations of heavier el-
ements, which we have been working towards for the past
several years. We have successively applied PIMC to study
progressively higher Z materials in the liquid-, warm-, and
plasma regimes, namely hydrogen [14], helium [15], car-
bon [16], nitrogen [17], water [16], oxygen [18], neon [19],
sodium [20] and silicon [21]. As part of this work, we
have significantly developed the capability of PIMC to uti-
lize nodal surfaces beyond that of free-particles, which will
pave the way for PIMC simulations of heavy elements in
the WDM regime. For these materials, we have also per-
formed Kohn-Sham DFT-MD simulation at lower temper-
atures where most electrons reside in bound states in order
to provide one coherent EOS table that covers a wide range
of temperature and density conditions.

In this paper, we provide additional analyses of previ-
ously published PIMC simulations on low-Z elements. In
Section 2, we briefly summarize the details of the simu-
lation methods. In Section 3, we present pair-correlation
data from our simulations of carbon and water plasmas.
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In Section 4, we compare our set of pair-correlation func-
tion data for low-Z elements and discuss common trends.
In section 5, we compare our set of shock Hugoniot curves
for low-Z elements and discuss common trends. Finally, in
Section 6, we provide some conclusions.

2. Simulation Methods

Rigorous discussions of the PIMC [22, 23, 24] and DFT
molecular dynamics (DFT-MD) [25] methods have been
provided in previous works, and the details of our simula-
tions have been presented in our previous publications [14,
15, 16, 21]. Here, we simply summarize the methods and
choices we make to set the parameters of the calculations.

PIMC is a state-of-the-art first-principles method for
computing the properties of interacting quantum systems
at finite temperature. The method involves stochastically
solving for the thermal density matrix, expressed in imag-
inary time path integrals, which is directly related to the
partition function and thermodynamic observables. This
framework provides an explicit many-body method that
treats all the important physical effects in theWDM regime,
such as bonding, ionization, exchange-correlation, and quan-
tum degeneracy [26]. The Coulomb interaction is incorpo-
rated via pair density matrices derived from the eigen-
states of the two-body Coulomb problem [27, 28, 29]. The
efficiency of PIMC increases with temperature as paths get
shorter and particles behave more classically.

In order to simulate fermions, we restrict the paths in
the fixed-node approximation to avoid the fermion sign
problem [30]. We have found approximate, free-particle
nodal surfaces are sufficient to simulate first-row plasmas
at temperatures as low as 1×106 K. Free particle nodes are
sufficient at temperatures where nearly all states except
1s states are ionized [16]. In order to go beyond the free-
particle nodal approximation, we have recently developed
a localized nodal surface to treat bound states in second-
row elements [21].

PIMC uses a small number of controlled approxima-
tions, whose errors can be minimized by converging param-
eters, such as the time step and system size. In simulations
using free particle nodes, we typically use a time-step of
1/256 Ha−1 for temperatures below 4×106 K, where the
total energy per atom is converged within 1%. For higher
temperatures, we typically decrease the time step as 1/T,
using between 4 and 80 time slices. For simulations using
localized nodal surfaces, we use a much smaller time-step
of 1/8192 Ha−1, using between 20 and 2560 time slices.
Regarding finite size errors, we showed simulations of 8-
and 24-atom cubic cells provide total energies that agree
within 0.4% for the relevant temperatures [19]. Our results
for the internal energy and pressure typically have statis-
tical errors of 0.3% or less. All pair-correlation functions
shown here are for 8-atom simulations cells.

While PIMC simulations are accurate and increasingly
efficient at high temperatures (T>1×106 K), DFT-MD
provides an efficient, state-of-the-art, first-principles method

at lower temperatures (T < 1×106 K). The DFT formal-
ism maps the many-body problem onto a single-particle
problem with an approximate exchange-correlation poten-
tial. In the WDM regime, where temperatures are at
or above the Fermi temperature, the exchange-correlation
functional is not explicitly designed to accurately describe
the electronic excitations [31]. However, in our PIMC and
DFT-MD studies of first- and second-row elements, we
found zero-temperature DFT functionals predicted ener-
gies within 2-5 Ha/atom of our PIMC results at temper-
atures near 1×106 K. This suggests that the error that
is introduced by using a ground-state functional is rather
small.

DFT incorporates effects of finite electronic tempera-
ture by using a Fermi-Dirac function to smear out the ther-
mal occupation of single-particle electronic states [32]. As
temperature grows large, an increasing number of bands
are required to account for the occupation of excited states
in the continuum, which typically causes the efficiency of
the algorithm to become intractable at temperatures be-
yond 1×106 K, where on the order of a thousand orbitals
per atom are partially occupied. In addition, pseudopo-
tentials typically replace the core electrons in each atom
to improve efficiency. Here, we are careful to avoid using
DFT-MD at temperatures where the K shell electrons un-
dergo excitations and study those conditions with PIMC
instead.

We employ standard Kohn-Sham DFT-MD simulations
for our calculations in the WDM regime. We use the
Vienna Ab initio Simulation Package (VASP) [33] with
the projector augmented-wave (PAW) method [34], and
a NVT ensemble regulated with a Nosé-Hoover thermo-
stat. Exchange-correlation effects are described using the
Perdew-Burke-Ernzerhof [35] generalized gradient approx-
imation. Electronic wave functions are expanded in a
plane-wave basis with a energy cut-off as high as 4000 eV
in order to converge total energy. Size convergence tests
up to a 24-atom simulation cell at temperatures of 10,000
K and above indicate that total energies are converged to
better than 0.1% in a 24-atom simple cubic cell. We find,
at temperatures above 250,000 K, 8-atom supercell results
are sufficient since the kinetic energy far outweighs the in-
teraction energy at such high temperatures [19]. The num-
ber of bands in each calculation is selected such that ther-
mal occupation is converged to better than 10−4, which
requires up to 10,000 bands in a 8-atom cell at 1×106 K.
All simulations are performed at the Γ-point of the Bril-
louin zone, which is sufficient for high temperature fluids,
converging total energy to better than 0.01% relative to a
comparison with a converged grid of k-points.

3. Pair-correlation functions for carbon and H2O

Our initial publication on PIMC simulations of car-
bon and water plasmas [16] provided the equation of state
across the WDM regime and showed that PIMC and DFT-
MD produce the same ionic plasma structure. Here, we
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provide a discussion of the temperature and density depen-
dence of pair-correlation functions and ionization processes
in warm dense carbon and water. The pair correlation is
defined as

g(r) =
V

N2

〈

∑

i

∑

j 6=i

δ(r − rij)

〉

, (1)

where N is the total number of particles, V is the cell vol-
ume, and r is the distance from the ith reference particle.
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Figure 1: C-C ion pair-correlation functions from PIMC simulations
of carbon plasma (8-atom cell).

Figures 1, 2, 3, and 4 show ion-ion pair-correlation
functions, g(r), for C-C pairs in carbon plasma and O-O,
O-H, and H-H pairs in water plasmas, respectively. The
g(r) functions were computed with PIMC over a tempera-
ture range of 1 × 106 − 1.034 × 109 K at densities of 4.17
and 12.64 g cm−3 in 8-atom cells for carbon and densi-
ties of 3.18 and 11.18 g cm−3 in 8-molecule cells for wa-
ter. In each case, the atoms are kept farthest apart at
low temperatures due to a combination of Pauli exclusion
among bound electrons and Coulomb repulsion. As tem-
perature increases, kinetic energy of the nuclei increases,
making it more likely to find atoms at close range. At the
same time, the atoms become increasingly ionized, which
gradually reduces the Pauli repulsion, but increases the
ionic Coulomb repulsion. As density increases, the like-
lihood of finding two nuclei at close range rises slightly.
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Figure 2: O-O ion pair-correlation functions from PIMC simulations
of H2O plasma (8-molecule cell).
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Figure 3: O-H ion pair-correlation functions from PIMC simulations
of H2O plasma (8-molecule cell).
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Figure 4: H-H pair-correlation functions from PIMC simulations of
H2O plasma (8-molecule cell).

At high temperatures, the system approaches the Debye-
Hückel limit, behaving like a weakly correlated system of
screened Coulomb charges.

Figures 5 and 6 show the integral of the nucleus-electron
pair correlation function, N(r), for C-e in carbon plasma,
and O-e water plasma, respectively. N(r) is given by the
formula

N(r) =

〈

1

NI

∑

e,I

θ(r − |~re − ~rI |)

〉

, (2)

where the sum includes all electron-ion pairs and θ repre-
sents the Heaviside function. N(r) represents the average
number of electrons within a sphere of radius r around a
given nucleus. From the comparison with 1s ground state
of an isolated atom, we find that the 1s sates in our PIMC
simulations are only slightly ionized at the lowest temper-
ature of 1×106 K. As temperature increases, the states are
further ionized and most electrons become unbound, caus-
ing N(r) to decrease. At higher density, an even higher
temperature is required to fully ionize the atoms, indicat-
ing that the 1s ionization fraction decreases with density
and pressure ionization is absent, as discussed in detail in
our previous paper [18]. Analogously, we plot N(r) for H-e
pairs in Fig. 7, which simply shows the hydrogen atom is
fully ionized at these temperatures, and, at higher densi-
ties, more electrons are found at closer range to the ions.

Figures 8 and 9 show electron-electron pair correlations
in carbon and water plasma, respectively, for electrons
having opposite spins. The functions are multiplied by the
number density ρ, so that the integral under the curves is
proportional to the number of electrons. The electrons
are most highly correlated for low temperatures, which re-
flects that multiple electrons occupy bound states around
a given nucleus. As temperature increases, electrons are
thermally excited, decreasing the correlation among each
other. The positive correlation at short distances increases
with density, consistent with a lower ionization fraction.

Figures 10 and 11 show electron-electron pair correla-
tions in carbon and water plasma, respectively, for elec-
trons with parallel spins. The positive correlation at in-
termediate distances reflects that different electrons with
parallel spins are bound to a given nucleus. For short
separations, electrons strongly repel due to Pauli exclu-
sion and the functions decay to zero. As density increases,
the peak at intermediate distances decreases, which clearly
shows the effect of pressure ionization of the L shell. Pres-
sure ionization is expected for these orbitals because they
are much larger than the 1s orbitals and are therefore sub-
ject to Pauli exchange with nearby nuclei. As temperature
increases, electrons become less bound, which also causes
the correlation to become more like an ideal fluid.

4. Comparison of pair-correlation functions

Figure 12 compares PIMC ion-ion pair-correlation func-
tions, g(r), for C, N, O, Ne, and Si plasmas at tempera-
tures of 1 and 2×106 K and similar densities. Lighter
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Figure 5: Number of electrons contained in a sphere of radius, r,
around a carbon nucleus in PIMC simulations of carbon plasma (8-
atom cell).
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Figure 6: Number of electrons contained in a sphere of radius, r,
around an oxygen nucleus in PIMC simulations of H2O plasma (8-
molecule cell).
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Figure 7: Number of electrons contained in a sphere of radius, r,
around a hydrogen nucleus in PIMC simulations of H2O plasma (8-
molecule cell).
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Figure 8: The electron-electron pair-correlation functions for elec-
trons with anti-parallel spins computed in PIMC calculations of car-
bon plasma (8-atom cell).
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Figure 9: The electron-electron pair-correlation functions for elec-
trons with anti-parallel spins in PIMC calculations of H2O plasma
(8-molecule cell).
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Figure 10: The electron-electron pair-correlation functions for elec-
trons with parallel spins in PIMC calculations of carbon plasma (8-
atom cell).
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Figure 11: The electron-electron pair-correlation functions for elec-
trons with parallel spins in PIMC calculations of H2O plasma (8-
molecule cell).
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Figure 12: Ion-ion pair-correlation functions from PIMC calculations
(8-atom simulation cells) of various plasmas at two sets of temper-
atures and densities. The gray curve at 9.3 g cm−3 and 1×106 K
is the DFT-MD result for silicon, which agrees well with the PIMC
result at the same conditions.
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ions are systematically found at closer range than heavier
ions due to smaller Coulomb repulsion and kinetic effects.
In each system, the atoms are kept farther apart at low
temperatures and found closer together at high tempera-
ture due to stronger collisions and reduced Pauli exclusion
effects. As density increases, we see a slight increase in
correlation at short distances in each case. PIMC and
DFT-MD predict consistent g(r) curves in the region of
temperature-density space results can overlap. For exam-
ple, in the figure, we compare the g(r) curves from PIMC
and DFT for silicon at 9.3 g cm−3 1×106 K. Our previ-
ous publications [16, 18, 19, 17] have shown PIMC and
DFT-MD predict consistent ionic g(r)results for the other
materials at similar conditions.
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Figure 13: Number of electrons contained in a sphere of radius, r,
around nuclei from various PIMC simulations (8-atom simulation
cells) of plasmas at two sets of temperatures and densities.

Figure 13 shows the N(r) functions for C, N, O, Ne,
and Si at temperatures of 1 and 4×106 K at similar den-
sities. As temperature increases in each system, the N(r)
function decreases due to an increased fraction of ther-

mal ionization. The ionization fraction strongly depends
on the atomic number, Z, since the electronic binding en-
ergy scales at Z2, requiring higher temperatures to ionize
core electrons in higher Z atoms. At 1×106 K, all sys-
tems have at least partially bound 1s electrons based on
comparison with the corresponding 1s core state, while at
4×106 K, only Si and Ne still have bound 1s electrons.
As density increases, the ionization fraction decreases in
each system, but the effect is less significant for core elec-
trons in higher Z systems within the density-temperature
range under consideration. There is no sign of pressure
ionization in any system at the conditions considered.
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Figure 14: The electron-electron pair-correlation functions for elec-
trons with anti-parallel spins in PIMC calculations (8-atom simula-
tion cells) of various plasmas at two sets of temperatures and densi-
ties.

For C, N, O, Ne, and Si plasmas, figures 14 show
electron-electron correlations for pairs with opposite spins.
The functions are multiplied by the number density ρ, so
that the integral under the curves is proportional to the
number of electrons. Similar to the earlier discussion of
C and H2O, the electrons are most highly correlated for

9



low temperatures, which reflects that multiple electrons
occupy bound states around a given nucleus. Higher Z
elements are more highly correlated than low Z elements
at low temperature due to their larger electron binding
energy. As temperature increases, electrons are thermally
excited, decreasing the correlation among each other. It
is again clear that higher Z systems require significantly
higher temperatures to ionize core electrons. The increase
in correlation with density at short distances, consistent
with a lower ionization fraction, is more significant for
lower Z elements in the density-temperature range under
consideration.
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Figure 15: The electron-electron pair-correlation functions for elec-
trons with parallel spins in PIMC calculations (8-atom simulation
cells) of various plasmas at two sets of temperatures and densities.

Figures 15 shows electron-electron pair correlations in
C, N, O, Ne, and Si plasmas for electrons with paral-
lel spins. The positive correlation at intermediate dis-
tances reflects that different electrons with parallel spins
are bound to a given nucleus. Higher Z systems show a
larger correlation at short distances since they binds core
electrons more tightly. For short separations, electrons

strongly repel due to Pauli exclusion and the functions de-
cay to zero. As density increases, the correlation peak at
intermediate distances decreases, which indicates the effect
of pressure ionization on the L shell. The pressure ioniza-
tion is more significant in larger Z systems at lower tem-
peratures since more electrons are still bound and experi-
encing Pauli exclusion effects. As temperature increases,
the correlation of lower Z systems more readily approaches
that of an ideal fluid.

5. Comparison of Shock Hugoniot Curves
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Figure 16: Hugoniot curves of various materials in temperature-
density space at their initial ambient or experimental densities. The
initial densities (in g cm−3) are He: 0.124, C: 2.253, N 0.807, O:
0.667, Ne: 1.507, and Si: 2.329.

Dynamic shock compression experiments [36, 37, 38,
39, 40] allow one to measure the EOS and other physical
properties of hot, dense fluids. Such experiments are of-
ten used to determine the principal Hugoniot curve, which
is the locus of final states that can be obtained from dif-
ferent shock velocities. DFT-MD has been validated by
experiments as an accurate tool for predicting the shock
compression of a variety of different materials [41, 42], in-
cluding nitrogen [43, 44].

In the course of a shock wave experiment, a material
whose initial state is characterized by an internal energy,
pressure, and volume (E0, P0, V0) will change to a final
state denoted by (E,P, V ) while conserving mass, momen-
tum, and energy. This leads to the Rankine-Hugoniot re-
lation [45],

(E − E0) +
1

2
(P + P0)(V − V0) = 0. (3)

Here, we compare the Hugoniots from the first-principles
EOS data reported in our previous PIMC and DFT-MD
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Figure 17: Temperature along the Hugoniot as a function of shock
compression ratio.
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Figure 18: Pressure along the Hugoniot curve as a function of shock
compression ratio.

simulations of He [15], C [16], N [17], O [18], Ne [19],
and Si [21] in the WDM and plasma regimes. For each
Hugoniot curve shown here, DFT-MD data is plotted for
T<1×106 K, and PIMC results are plotted for higher tem-
peratures. Figure 16 compares the temperature depen-
dence along the Hugoniot curve as a function of density
for each system initialized at their ambient or experimental
densities (see the Fig. caption). The ordering of the curves
depends strongly on the initial density and the atomic
number, Z, of the system. Generally, systems with higher
atomic numbers correspond to higher densities, but since
the ambient densities may vary, the ordering of the curves
does not always correspond to ordering of the atomic num-
bers of the systems.

Figure 18 and Fig. 17 compare the temperature and
pressure dependence, respectively, along the Hugoniot curve
as a functions of the shock-compression ratio for each sys-
tem. In the high-temperature limit, all curves converge
to a compression ratio of 4, which is the value of a non-
relativistic, ideal gas. The magnitude of the shock com-
pression ratio and the structure along the Hugoniot is de-
termined by the excitation of internal degrees of freedom,
such as dissociation and ionization processes, and the in-
teraction effects, which directly depend on Z. Exciting in-
ternal degrees of freedom increases compression, while in-
creased interaction effects decrease compression.

In both plots, each Hugoniot curve exhibits a distinct
maxima in the shock compression corresponding to K or
L shell ionization. The temperature at the compression
maxima is directly determined by Z because the binding
energy scales as Z2, which means a higher temperature is
needed to reach the regime of ionization. Therefore, as
Z increases, the temperatures of the compression peaks
increases.

However, the magnitude of the shock compression it-
self does not strictly increase with Z in our plots because
systems with a higher initial density tend to have a smaller
increase in the shock compression ratio due to stronger in-
teraction effects. Therefore, the lower-initial-density sys-
tems (He, N, O, and Ne) all have higher shock compres-
sion ratios than the higher-initial-density systems (C and
Si), particularly at lower pressure and temperature condi-
tions. Indeed, the compression maxima are are largest for
the lowest initial densities. The differences in the shock-
compression ratios are smaller among the systems near the
compression maxima due to increased compression from
more ionization effects in higher Z systems.

6. Conclusion

In conclusion, we have analyzed and compared results
from PIMC and DFT-MD calculations for several first-
and second-row materials in the liquid, warm dense mat-
ter, and plasma regimes. We have provided ionic and
electronic pair-correlation functions for carbon and water
plasmas and shown that they follow physical trends, such
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as increased ionization fraction with temperature and de-
creased K-shell ionization fraction with density. We then
compared pair-correlation functions and Hugoniot curves
for several materials (He, C, N, O, Ne, and Si) comprised
of increasing higher Z elements. The pair-correlation func-
tions reveal how the plasma structure and ionization pro-
cesses evolve with temperature and density. The pair-
correlation functions and Hugoniot curves follow specific
trends in temperature and density that depend directly
on Z due to physical internal degrees of freedom and in-
teraction effects, and, in the case of the Hugoniot curves,
on initial density. Finally, we find the temperature of the
compression maxima in the Hugoniot curves, associated
with L-shell and K-shell ionization, increases directly with
Z, while the magnitude of the compression ratio depends
mostly on the initial Hugoniot curve density.
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