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Abstract. We perform ab initio simulations of beryllium (Be) and magnesium
oxide (MgO) at megabar pressures and compare their structural and
thermodynamic properties. We make a detailed comparison of our two recently
derived phase diagrams of Be [Wu et al., Phys. Rev. B 104, 014103 (2021)]
and MgO [Soubiran and Militzer, Phys. Rev. Lett. 125, 175701 (2020)] using
the thermodynamic integration technique, as they exhibit striking similarities
regarding their shape. We explore whether the Lindemann criterion can explain
the melting temperatures of these materials through the calculation of the Debye
temperature at high pressure. From our free energy calculations, we find that
the melting line of both materials is well represented by the Simon-
Glazel fit Tm(P ) = T0(1+P/a)1/c, where T0 = 1564 K, a = 15.8037 GPa and
c = 2.4154 for Be, while T0 = 3010 K, a = 10.5797 GPa and c = 2.8683 for
the MgO in the B1. For the B2 phase, we use the values a = 26.1163 GPa
and c = 2.2426. Both materials exhibit negative Clapeyron slopes on the
boundaries between the two solid phases that are strongly affected by anharmonic
effects, which also influence the location of the solid-solid-liquid triple point. We
find that the quasi-harmonic approximation underestimates the stability range of
the low-pressure phases, namely hcp for Be and B1 for MgO. We also compute
the phonon dispersion relations at low and high pressure for each of the phases of
these materials, and also explore how the phonon density of states is modified by
temperature. Finally, we derive secondary shock Hugoniot curves in addition to
the principal Hugoniot curve for both materials, and study their offsets in pressure
between solid and liquid branches.
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1. Introduction

Phase transitions are ubiquitous and significant in
many areas of scientific research including condensed
matter physics, geophysics, and planetary science [1, 2,
3]. Pressure-induced phase transitions, in particular,
modify the crystalline structure and thermodynamic
properties of a material and are thus crucial to
characterize planetary interiors [4, 5, 6, 7, 8, 9, 10].
Different crystalline phases of the same material can
have substantially different optical properties and
elastic responses, which affects how sound waves
or seismic waves propagate. Knowing the exact
location of phase boundaries is also relevant for
the interpretation of shock experiments that are
able to compress materials to high pressures and
temperatures. Magnesium oxide (MgO) is part of
the ferropericlase mineral family and one of the
major building blocks of the Earth’s mantle. It
is also assumed to be a major component of rocky
exoplanets, playing an important role in the rheology
and stratification of large exoplanets with mantles
under pressures much higher than those present at the
Earth interior [11]. In high-pressure experiments,
MgO is also used as a pressure standard because
its equation of state at low temperatures is well
established [12, 13, 14]. Moreover, MgO is also
commonly used in metallurgy as well as in the
environmental and construction industry as a
refractory material because of its high thermal
conductivity and low electrical conductivity [15,
16]. MgO has an NaCl-type (B1) structure at low
pressures that transforms into a CsCl-type structure
(B2) at approximately 400-600 GPa [17] and this B1-
B2 transition can affect the heat flow and thermal
evolution of rocky exoplanets [18, 19, 20, 11].

Beryllium is used in plasma physics, nuclear
science, and space science, being the main com-
ponent of the low-weight mirrors of the recently
launched James Webb Space Telescope [21]. It
exhibits a phase diagram at megabar pressures that
very much resembles that of MgO: it has an hcp phase
that transforms to a bcc phase at high pressure. The
latter is equivalent to the B2 phase of MgO if the atoms
were of the same species (see Fig. 1). In fact, pure Mg,
which is in the same group as Be in the periodic ta-
ble, also exhibits an hcp to bcc transition, but at much
lower pressures [22].

There have been many attempts to calculate
the high pressure solid-solid boundary in the phase
diagram of MgO [17, 23, 24, 25, 26, 27, 28, 29]
and Be [30, 31, 32, 33, 34]. Most of them rely on
the quasi-harmonic approximation (QHA), in which
the free energy is calculated from volume-dependent
phonons and a decoupled electronic contributions.
This approximation breaks down at high temperature

where anharmonic effects can play an important
role [35, 17, 24, 33]. Several experiments have been
performed to observe the high pressure phases of
both materials but bcc phase of beryllium has not
been detected neither in laser-heated diamond anvil
cell [36] nor with shock compression experiments [37].
It was concluded that the low-pressure phases are
much more stable than the QHA had predicted [36,
37]. B1-B2 solid phase transition in MgO has been
observed in recent ramp compression experiments [11].
Temperature measurements, however, are still lacking,
making it difficult to establish the exact location of the
B1-B2 phase boundary.

In this study, we use ab initio simulations to derive
thermodynamic and vibrational properties of MgO and
Be at high pressure. We compare the phase diagrams of
these materials that we have derived from free energy
calculations [17, 35], discussing the similarities between
them, and analyze how anharmonic effects modify
the phase boundaries at high temperature. We also
use the equation of state that we have generated to
derive secondary shock Hugoniots curves that depart
from principal Hugoniot curve and make predictions
where double-shock compression experiments would
intersect the melting line. We also compare the phonon
dispersion relationships and show how they change
with pressure and temperature for each phase, offering
a tentative explanation for anharmonic effects that are
common to both phase diagrams.

2. Methods

2.1. Density functional molecular dynamics

We performed Kohn-Sham density functional molec-
ular dynamics (DFT-MD) simulations using the Vi-
enna Ab initio Simulation Package (VASP) [38] un-
der the projector augmented wave [39, 40] method and
a canonical ensemble regulated with a Nosé-Hoover
thermostat [41, 42]. The Mermin functional [43]
was used throughout to incorporate the effects of ex-
cited electronic states at elevated temperatures. The
exchange-correlation effects were modeled with the
Perdew–Burke–Ernzerhof (PBE) functional in gener-
alized gradient approximation (GGA) [44]. The 1s22s2

electrons were treated as valence configuration in the
simulations of Be, while 1s2 frozen cores of magnesium
and oxygen were used leaving 10 and 6 electrons as
valence, respectively [45, 46]. Electronic orbitals are
expanded in a plane-wave basis with an energy cut-off
of 1,000 eV for Be and 1,200 eV for MgO. We chose a
time step of 1.0 fs and total simulation times of at least
2 ps to average the thermodynamic quantities. The er-
ror bars were derived from blocking method [47, 48].
We use a Monkhorst-Pack grid [49] of 2×2×2 k-points
to sample the Brillouin zone in our MD simulations of
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Be, of Γ point only for MgO. A k-point correction to
the DFT-MD results of Be has been applied in order
to correct for the insufficient sampling of the Brillouin
zone [35].

Molecular dynamics simulations of Be were
performed in 128- (4 × 4 × 4) and 144-atoms (4 ×
3× 3) orthorhombic supercells for bcc and hcp phases,
respectively. For MgO, we chose a 64-atom supercell
for the B1 phase and 250 atoms for the B2 phase.
Liquid simulations were performed in cubic cells with
128 atoms for Be and 64 atoms for MgO. Finite size
effects were analyzed and found to be small in our
previous publications [17, 35].

2.2. Thermodynamic Integration

In order to calculate the Gibbs free energy of each
system, we employed the thermodynamic integration
method [50, 51, 52, 53] that allows one to derive as the
Helmholtz free energy of solid and liquid phases. For
a solid structure governed by DFT forces, we use the
expression

FDFT = FEin + ∆FEin→cl + ∆Fcl→DFT, (1)

where FEin is the Helmholtz free energy of an Einstein
crystal of the same density. The second term represents
the free energy difference between an Einstein crystal
and a solid system ruled by a classical potential.
The last term is free energy difference between that
classical system and the DFT system of interest,
where the interactions are controlled by the Kohn-
Sham equations. These free energy differences are
calculated at fixed volume and temperature using the
thermodynamic integral

∆Fa→b = Fb − Fa =

∫ 1

0

dλ 〈Ub(ri)− Ua(ri)〉λ , (2)

where the brackets represent an ensemble average for
a system ruled by the hybrid potential U(λ) = (1 −
λ)Ua + λUb. This defines a continuous transformation
between two systems governed by the potential energies
Ua and Ub.

The classical system is controlled by a combina-
tion of harmonic and pair forces, which are fitted to
match the DFT forces along MD trajectory [54, 55,
56, 57]. The construct five λ-ensembles to evaluate the
term, ∆Fcl→DFT are generated with molecular dynam-
ics simulations because they allow for efficient propaga-
tion of electronic wave functions. The evaluation of the
∆FEin→cl requires very little computer time in compar-
ison and is evaluated with Monte Carlo methods using
fifty or more λ steps. When the system analyzed is
a liquid, we change FEin by Fig, the free energy of an
ideal gas.

We do not apply the Frenkel correction to the free
energy of solid phases [50, 58] because it overestimates

the correction that results from fixing the center of
mass in the simulations [53], introducing additional
finite size effects that lead to an incorrect predictions
for the melting temperature [17, 35].

2.3. Quasi-harmonic approximation and phonon
quasi-particle method

We performed a number of phonon calculations under
the quasi-harmonic approximation using density-
functional perturbation theory (DFPT) [59] and the
phonopy software [60]. In QHA, the free energy of
the system is decomposed into three terms

F (V, T ) = E0(V ) + Fe(V, T ) + Fi(V, T ), (3)

where E0 is the internal energy of perfect lattice, Fe is
the electronic contribution of free energy obtained from
the Mermin functional [43], and Fi is the harmonic
vibrational free energy of the lattice, calculated
from eigenvalues of dynamical matrix from DFPT
simulation. We ignored the electronic excitation term
since it accounts for no more than 2% of total free
energy [35].

Harmonic phonon frequencies were computed with
DFPT and we found that 4×4×4 supercells containing
128 atoms for Be in the hcp phase were sufficiently
large to yield accurate phonon dispersion relationships.
We used 64 atoms for Be in the bcc phase and 128
atoms for MgO in the B1 and B2 phases. The
Brillouin zone was sampled with a Γ-centered grid of
3 × 3 × 3 k-points for Be and MgO. In addition, we
also used the dynaphopy software [61] to obtain the
frequencies and lifetimes of the phonon quasiparticles,
which are temperature dependent [35, 33, 61, 62] from
the velocity autocorrelation function in our DFT-MD
simulations:

Gqs(ω) =

∫ +∞

0

〈Vqs(0)Vqs(t)〉eiωt dt. (4)

Here, q is the wave vector in Brillouin zone, s
is the index of the phonon branch and Vq(t) =∑N
i=1

√
mi exp (iq ·Ri)vi(t) · eiqs is mass-weighted and

projected velocity for a normal mode (q, s) [33] at a
given time t of our DFT-MD trajectory. Here, mi and
Ri represent the mass and equilibrium coordinate of
the atom i, and eiqs is the phonon polarization vector
obatined from lattice dynamics [33, 62, 63].

3. Results and discussion

3.1. Phase diagrams of MgO and Be

Using the thermodynamic integration method, we
recently derived the high pressure phase diagrams of
MgO [17] and Be [35]. Despite the very different nature
of both systems, their phase diagrams exhibit striking
similarities as can be seen in Fig. 1. Both Be and MgO
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Figure 1. Overlay of the phase diagrams of MgO and Be.
The upper dash-dotted lines indicate the boundaries between
B1, B2, and liquid phase of MgO. The lower solid lines show
the boundaries between hcp, bcc, and liquid phases of Be.
The upper inset shows the B2 structure, in which the O atom
occupy positions in the corner on a body-centered cubic (bcc)
lattice, and Mg in the center. Below, the unit cell of Be in
the bcc phase is shown with green spheres. All thick phase
boundaries were calculated with the thermodynamic integration
method [17, 35]. The thin lines correspond to calculations using
the QHA method [23, 31].

have a negative Clapeyron slope along the solid-solid
phase boundary, and a positive slope along the melting
curve, which renders both phase diagram rather similar
in the pressure regime under consideration. Both phase
diagrams include a triple point located at 370 GPa and
10 000 K for MgO and 165 GPa and 4314 K for Be. We
attribute this difference in temperature and pressure to
the fact that MgO is governed by ionic bonds that are
stronger than the metallic bonds in Be.

It has been shown that the quasi-harmonic
approximation underestimates the thermodynamic
stability range of the low-pressure phases [17, 35],
namely hcp for Be and B1 for MgO, because it relies
exclusively on harmonic phonon frequencies calculated
for a static lattice (T = 0 K). When anharmonic
contributions are included the boundary between solid
phases but also the triple points of MgO and Be shift
towards higher pressures.

The low-pressure phases of MgO and Be have

been seen in multiple high pressure experiments but
only a recent study by Coppari el al. [64] confirmed
the existence of the B2 phase of MgO with X-ray
diffraction measurements. The bcc phase of Be has
not yet been confirmed with experiments [36, 37].

3.2. Melting curves and validity of Lindemann’s law

The Lindemann melting criteria predicts that melting
of a solid occurs if the root mean squared displacement
(rMSD) of the atoms,

√
〈u2〉, reaches a certain fraction

of the nearest neighbor distance, a. It has been
used to predict the melting curves of materials [65]
as a simple alternative to other methods that predict
melting temperatures [66]. If one derives

√
〈u2〉 within

harmonic theory [67, 68, 69, 70, 71, 72], this fraction,
f , can be expressed in terms of the Debye temperature,
ΘD, [69, 70]

f2 ≡
〈
u2
〉

a2
≈ 9h̄2Tm

MkBa2Θ2
D

≡ Tm
T∗

, (5)

where Tm denotes the melting temperature, M the av-
erage mass, and h̄ and kB are Plank and Boltzmann
constants, respectively. The melting temper-
atures of both materials are well represented
by the Simon-Glazel fit Tm(P ) = T0(1 + P/a)1/c.
The melting line of both Be phases can be ap-
proximate by T0 = 1564 K, a = 15.8037 GPa,
and c = 2.4154. For MgO, we employ a com-
mon T0 value of 3010 K and represent the B1
melting line by a = 10.5797 GPa and c = 2.8683
and the B2 melt curve by a = 26.1163 GPa and
c = 2.2426 [17, 35]. When the melting tempera-
ture is normalized by T0 in Fig. 1, one notices
that the melting lines of MgO and Be are very
similar. At 2000 GPa, the melting tempera-
tures are 7.0 and 7.5 times as high as their re-
spective ambient values. In the limit of P � a,
one finds Tm/T0 ≈ (P/a)1/c, which leads to a sim-
ilar high-pressure behavior for both materials.

For convenience, we have introduced T∗ ≡
MkBa

2Θ2
D/9h̄

2 as a normalizing factor for the melting
temperatures. For a number of materials, the value
of f at ambient pressure has been estimated to lie
between 9% and 19% [70], but it can reach values as
high as 27% for light elements such as hydrogen [73].
If the interaction between atoms is purely repulsive,
the value of f is expected to remain constant along
the melting line for monatomic systems [74], which
would in principle offer a very simple way to predict
the melting line of a material because only the rMSD
is needed for different P and T conditions.

Debye temperature can be expressed in terms of
logarithmic phonon moment: [30],

ΘD ≡
h̄

kB
exp

(
1

3
+

∫ ∞
0

g(ω) ln(ω) dω

)
, (6)
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Figure 2. Logarithmic phonon moment (Debye temperature)
of Be and MgO as function of volume per atom. The symbols
represent results from individual harmonic calculations while
lines are fit functions in form of Eq. (7).

which is obtained from integrating the phonon density
of states, g(ω), of each phase. In Fig. 2, we plot the
logarithmic moment of the two phases of Be and we
fitted it to the functional form

ΘD(V ) = Θ0(V ∗)

(
V

V ∗

)−B
exp [−A(V − V ∗)] , (7)

as done in Refs. [30, 35]. We derived the fitting
parameters A = 0.086 Å−1, B = 0.506, V ∗ = 6.085 Å3,
and Θ0(V ∗) = 1299.00 K for the hcp phase of Be
and A = 0.101 Å−1, B = 0.515, V ∗ = 6.868 Å3,
and Θ0(V ∗) = 1039.86 K for bcc phase. We also
observe that the logarithmic phonon moment of Be is
very similar to that of MgO when compared at a given
volume at either their low or high pressure phases. For
MgO, the logarithmic phonon moment at zero-pressure
is ΘMgO

0 = 720.71 K, which is very close to the reported
Debye temperature of ΘD = 743 K in experiments [75].

In Fig. 3, we plot the value of Lindemann’s ratio,
f , that we derived on the melting line with two
different approaches. First, we derive Lindemann’s
ratio within the harmonic approximation. Using the
fitted functions of Eq. (6) in Fig. 2, we derive the Debye
temperature for a given pressure and then compute T∗
to obtain the Lindemann’s ratio from f =

√
Tm/T∗,

where Tm is the melting temperature that we have
obtained from our TDI calculations. This represents
the right-hand side of Eq. (5). Second, we obtain the
actual root mean squared displacement of the atoms,√
〈u2〉, that we observe in our simulations of solids at

different melting points, and divide it by the nearest-
neighbor distance, which corresponds to the left-hand
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Figure 3. Lindemann ratio, f , for two solid phases of MgO
and Be. For a given pressure, all results were derived for the
corresponding melting temperatures, Tm, that were obtained
from the free energy calculations using the TDI method [17, 35].
The open symbols show results of the harmonic approximation in
Eq. (5). The filled symbols correspond to average displacement,√

〈u2〉, computed along DFT-MD trajectories of Be in the
respective phases, normalized by the nearest neighbor distance.
The green circles are results from an OCP model for Be
that reproduce the harmonic calculations for the bcc
phase quite well.

side of Eq. (5).
Since the nearest neighbor distance changes

discontinuously between solid phases, one may not
obtain a smooth curve for f , but one would expect it
remains approximately constant along the melting line.
Fig. 3 shows the value of f , obtained from the ratio
between Tm and T∗, to be 0.13 for Be at P = 0 GPa,
which is lower than for MgO, approximately 0.18. This
means that atoms in the MgO crystal can withstand
larger lattice vibrations than those in the Be crystal
before melting sets in. In fact, as we will see in
Section 3.4, at any given pressure, the phonon modes
of Be have higher frequencies than those of MgO.
According to the QHA, the Lindemann ratio of Be
remains lower than that of MgO at high pressures,
even after the phase transformation of both systems
has taken place. We also observe that, as pressure
increases, this factor f remains approximately constant
(around 0.157) along the melting line for Be, while for
MgO it shows a decreasing behavior with asymptotic
convergence towards 0.165. This can be intuitively
understood by recalling that, as the materials are
compressed, the atoms come closer together and are
subject to stronger repulsive forces, in line with the
hypothesis presented by Hansen et al. [74].

However, when we compute the ratio f from
the MSD values that we obtain from our DFT-
MD simulations, we obtain values for f that are
significantly higher than those predicted with harmonic
theory. The normalization distance, a, was chosen
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to be the nearest neighbor distance, but it can
also be chosen as the lattice parameter at a given
pressure. However, none of these choices allowed us
to match the values calculated from the harmonic
theory. We attribute this difference to the strong
anharmonic effects at high temperature that are
present in both materials. This discrepancy means
that the Debye theory predicts rMSD values that can
be up to 40% smaller than the actual displacements
observed with DFT-MD simulation at the melting
conditions. Estimating melting temperatures at high
pressure from the ambient value of f would result
in significant deviations from the actual melting
temperature, because f changes with pressure.

For example, QHA predicts f to be 0.145 for the
hcp phase of Be at 300 GPa while at ambient pressure,
the value is only 0.130. If the ambient value had been
used to infer the melting temperature at 300 GPa, it
would have underestimated the melting temperature
by 24% because f enters quadratically into Eq. (5).
However, estimating the melting temperature of the B1
structure of MgO by consistently using the harmonic
prediction value at ambient pressures works fairly well
because the value of f ≈ 0.175 remains approximately
constant up to 1900 GPa, even after the transition to
the B2 phase. Across this entire range, f varies by
less than 8%, according to our estimations from the
harmonic theory. Nevertheless, these values are not
very useful to estimate the actual displacements that
tend to be much larger than the harmonic predictions.

It is worth noticing that the differential Linde-
mann equation, which relates the slope of the melt-
ing curve to the Grüneisen parameter [76, 77], is much
more effective in estimating the melting temperature
than basing it on the Lindemann ratio, f [35].

Since beryllium is composed of only one
type of ion, we also applied the one-component
plasma (OCP) model to derive the Lindemann
factor in the harmonic approximation. The
OCP model approximates the ions in a real
material by an ensemble of Coulomb charges
in front of a rigid, neutralizing background
of electrons [67, 68, 71, 72, 78]. At low
temperature, the nuclei crystallize into a bcc
lattice [67]. Following Refs. [68, 72], we
derived the Lindemann factor for Be from
the OCP model and added it to Fig. 3.
We found good agreement between the OCP
predictions and results that we derive with
density functional theory that represents the
forces on the nuclei more accurately. Both
set of calculations relied on the harmonic
approximation. The Lindemann ratio of the
OCP model shows very little dependence on
pressure and temperature and is approximately
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Figure 4. Phase diagram and shock Hugoniot curves of Be.
The upper panels show how the principal and secondary shock
Hugoniot curves shift at phase boundaries. The lower panels
shows different Hugoniot curves as well as the solid-liquid-
coexistence region in pressure-density space. For clarity, pressure
on the Y axis has been divided by density squared.

15.3% [71, 72]. Our corresponding DFT results
show slightly stronger dependence on pressure.

3.3. Shock Hugoniot Curves

In Fig. 4, we show the principal shock Hugoniot
curve and a collection of double-shock Hugoniot curves
of Be that we derived from our DFT-MD results.
Double-shock experiments are designed to reach higher
densities and lower temperatures than single-shock
experiments. Recent double-shock experiments on
MgO have reached pressures up to 2100 GPa [79].
However, diffraction measurements to determine the
crystal structure and the onset of the B1-B2 phase
transition have yet to be conducted. While no such
experiments have been performed for Be, we provide a
prediction here by generating several secondary shock
Hugoniot curves based on our computed equation of
state. Throughout this work, we employ the Rakine-
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Hugoniot relation [80],

H̃ = (E − E0) +
1

2
(P + P0)(V − V0) = 0 , (8)

that relates the internal initial state energy, E0,
pressure, P0, and volume, V0 to the final shock energy,
E, pressure, P and volume, V .

We predict that a second shock that starts from
77 GPa and 1000 K (red dot-dashed line in Fig. 4)
on the principal Hugoniot curve, will intersect the hcp-
bcc phase boundary at 300 GPa and 2400 K, then
intersect the melting line at 570 GPa and 6980 K, and
finally re-emerge at 680 GPa and 7500 K in the liquid
phase. The gap between the solid and liquid branches
along the melting is about ∼110 GPa, which represents
a density change of 0.25 g cm−3.

Fig. 4 shows that the slope in P -T space
of the secondary shock Hugoniot curves is much
shallower when they initially emerge from the principal
Hugoniot curve, which means they intersect the hcp-
bcc boundary and the melting line at much higher
pressure than the principal Hugoniot curve. Eventually
the slope of the secondary shock curves will steepen at
much higher pressure but this range is outside of our
consideration.

Fig. 4 illustrates that the offset between solid and
liquid branches of the secondary Hugoniot curve is
larger if the secondary Hugoniot curve starts from a
higher pressure. For instance, if it starts from P =
160 GPa and T = 3000 K (pink dot-dashed line
in Fig. 4), the secondary shock curve intersects the
melting line at ∼680 GPa and enters the liquid phase
only at ∼855 GPa, leaving a gap of 175 GPa, much
wider than 40 GPa gap on the principal Hugoniot curve
that started from ambient conditions.

Fig. 4 also shows that different secondary
Hugoniot curves intersect one another, which is simply
a consequence of shock compression curves converging
to a compression ratio of 4 in the limit of high
temperature. This means that secondary shock
Hugoniot curves that start from a higher pressure and
temperature have to intersect those that start at lower
temperature and pressures.

Now we focus on the question how much the
offset in pressure and temperature between liquid and
solid branches of different secondary Hugoniot curve
depends on their initial conditions. The magnitude
of the offset is larger on the secondary Hugoniot
curve than on the principal Hugoniot curve, and it
increases if the starting point is chosen higher in
pressure/temperature along the principal Hugoniot
curve. To offer an explanation for both trends, we
provide the following analytical arguments. The reason
for the offset between the two branches lies in the
differences between the EOS of the solid and the liquid,
namely the enthalpy of fusion, ∆H and the difference

in specific volume, ∆V , for given P and T on the
melting line. Introducing E = H−PV , we can rewrite
Eq. (8) as,

2H̃ = 2H − P (V + V0) + P0(V − V0)− 2E0 = 0 . (9)

Then we consider EOS perturbations in enthalpy, dH,
pressure, dP , and volume, dV , but require that the
total differential, dH̃, remains zero to first order.
Starting from the EOS point (HS , PS , VS) where the
solid Hugoniot branch intersects the melting line, we
treat the switch to the closest liquid point on the
Hugoniot (HL = ∆H + HS , PL = ∆P + PS , VL =
∆V +VS) as a perturbation to the EOS. This enables us
to relate the offset in volume to the enthalpy of fusion,
∆H and a change in pressure, ∆P :

∆V

V
≈ 2∆H −∆P (V + V0)

(P − P0)V
. (10)

We found that the two terms in the numerator, ∆H
and ∆P (V + V0), are of comparable magnitude and
are thus both needed to determine the density offset
between solid and liquid branches. More importantly,
the denominator illustrates that with increasing P0,
the offset in volume between solid and liquid branches
increases. This explains why the offset is small on the
principal Hugoniot curve (P0 ≈ 0) and then increases
for various secondary Hugoniot curves with rising P0.

We found that the predictions of Eq. (10) agreed
quantitatively fairly well with solving Eq. (8) explicitly
for liquid and solid branches. For example, for the
secondary Hugoniot curve that starts from 77 GPa and
1000 K (red dashed curve in Fig. 4), we calculated
volume offset of ∆V/V = 4.1% explicitly and while
Eq. (10) predicts a change of 3.8%.

In Fig. 5, we show the principal and secondary
shock Hugoniot curves of MgO. The gap in pressure
on the melting line is much larger for secondary shock
curves than it is on the principal Hugoniot curve and
it widens with increasing starting pressure. This is the
same trend we see for Be, which confirms our prediction
based on Eq. (10).

In general we find that if a Hugoniot curve
switches to a lower-density phase, like the liquid,
it shifts to a higher pressure and temperature.
Conversely if it switches into a slightly denser, solid
phase, it shifts to a lower temperature but again to
higher pressure. The temperature changes are a direct
consequence of the Clapeyron slope, which is positive
along the melting line but negative for the solid-solid
transitions that we consider here.

It is interesting to note that the double shock is
an interesting strategy to investigate the B2 phase as
it allows to reach high pressures while keeping the
temperatures moderate. For instance by exploring
different starting points above 2000 K yet in the solid
phase for the second shock, one can reach a large
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Figure 5. (Top) Principal and secondary shock Hugoniot curves
of MgO are shown along with B1, B2, and liquid phases. The
four lower secondary shock curves started in the B1 phase at
2000, 4000, 6000, and 8000 K, and respectively at 165, 238, 299,
356 GPa. The two upper curves begin in the B2 phase at 9000
and 10000 K. With increasing starting pressure, the gap widens
between solid and liquid branches of the secondary curves as
seen in Fig. 4. The filled circles represent results from recent
double shock experiments [79]. The numbers nearby indicate
the starting pressure of the second shock in GPa. (Bottom)
Series of isentropes in liquid MgO started from the principal
Hugoniot. These isentropes mimic a soft ramp compression [81]
started after a first initial shock. The three different curves are
for an entropy of 12, 12.5 and 13 kB/atom from bottom to top.

portion of our predicted region of stability for B2, with
pressures nearly as high as 1400 GPa. However states
in the liquid phase at the same pressure and right above
are actually unreachable with the same double shocks.
As an example, if one were to investigate the liquid
phase at 1200 GPa and 20,000 K, one would need to
initiate the second shock already in the liquid phase.

In Fig. 5, we also compare our predictions with
the recent double shock experiments by Hansen et
al. [79]. Their secondary shocks started in the B1
phase from pressures between 157 and 253 GPa on
the principal Hugoniot curve. Therefore only our
two lowest double shock curves are relevant for a

comparison. We find that only the experimental data
point at the highest pressure (2109 GPa) agrees with
our DFT-MD results within error bars. Hansen et
al. concluded that the three double-shock points from
1218−1950 GPa resided on the MgO melting line,
which would imply a ∼10% lower melting temperature
than we predicted with our DFT-MD simulations, a
discrepancy of 2−3 σ. The largest deviation is seen for
the experimental data point at 1950 GPa that started
from 157 GPa on the principal Hugoniot curve because
one needs to compare it with the brown double shock
curve in which we predict to enter the liquid phase
already at 1550 GPa. This means more work is needed
to resolve these discrepancies, and that experimental
and theoretical techniques have yet to agree on where
the phase boundaries of MgO are located at megabar
pressures.

We derived a set of isentropes initiated from the
principal Hugoniot of MgO as can be seen in Fig. 5.
They are an interesting way of exploring the liquid
phase. For the lowest conditions reported in the figure,
with an entropy of 12 kB/atom, we predict that the
isentrope intersects the melting line at circa 1100 GPa
and 16,000 K and follows the melting line to at least
2000 GPa.

3.4. Phonon dispersion

The predicted phonon dispersion curves of the low-
pressure phase of Be and MgO are shown in Fig. 6. We
consider two volumes in each phase to show the effects
of pressure. At 0 GPa, the phonon dispersion curves
of Be and MgO show good agreement with previous
calculations and experiments [33, 83, 84, 85].

We observe that for both materials, the phonon
dispersion relations at high pressure are not connected
with those at ambient pressure by a mere scaling
factor, as both the acoustic and optic branches are
qualitatively different. However, part of the topology
is preserved, as splitting and merging of branches at
the different points of the Brillouin zone show the same
behavior. For example, the transverse optical branches
that merge at the Γ point at 0 GPa around 14.5 THz,
also merge at the Γ point at 400 GPa but at a much
higher frequency of 24.4 THz for Be, and 40.9 THz for
MgO. However, the ratio between frequencies of the
longitudinal (LO) and transverse optical (TO) modes
at the Γ point is much higher at high pressure (1.41
at 0 GPa vs. 2.10 at 400 GPa). At 0 GPa, the
frequency of LO mode at the K point is higher than the
frequency at the M point, but this feature is reversed
at high pressure, where the frequency is higher at the
M point compared to the K point. The gap between
the acoustic branches at the M point also widens at
high pressure.

We also observe that the phonon dispersion
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Figure 6. Phonon dispersion relations of Be and MgO in their
low-pressure phases (hcp and B1, respectively). To illustrate how
the phonon frequencies change with pressure within harmonic
theory, we show results for 0 and 400 GPa. The corresponding
densities are 1.88 and 4.32 g cm−3 for Be, and 3.47 and
6.80 g cm−3for MgO. The respective phonon density of states
is shown at the right. The higher frequencies at 400 GPa have
been scaled by a factor of 0.42 for Be and by 0.35 for MgO
to match the frequencies of the acoustic branch at the K point
and the optical branch at the X point, respectively. All PDOS
plots have been normalized to 1. The open circles represent
experimental data at 0 GPa [82, 83, 84, 85].

relations of MgO in the B1 phase in Fig. 6 have many
similarities to those of Be in the hcp phase. The highest
frequency of ∼21 THz at the Γ point corresponds to
the optical branch that emerges due to the LO-TO
splitting caused by the dipolar moment interactions,
which resembles the LO branch of Be. However, the
shape of PDOS of MgO, unlike that of Be, changes
significantly from 0 to 400 GPa. The disappearance
of the low frequency peak in the PDOS of MgO and
the sharp increase of the high frequency peak, followed
by a rapid decrease to zero, indicates the stiffening of
phonon modes of the B1 structure at 400 GPa, where
the reduction of the LO-TO gap is smaller due to the
reduction in strength of the dipole effect.

In Fig. 7, we show the evolution of the phonon
density of states of Be and MgO in their low pressures
phases (hcp and B1, respectively) as a function of the
volume, which highlights how the low-frequency peak
of the B1 phase of MgO decreases respect to the high-
frequency peak. The PDOS of the hcp of Be shows a
sharpening of the high-frequency peak with reducing
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Figure 7. Progression of the phonon density of states of Be
in the hcp structure and of MgO in the B1 phase are shown as
function of frequency. The volumes per atom are given in the
legend.

pressure and its spreading across a wider range of
frequencies at high pressure. We can observe that
the PDOS of Be is always non-zero at all frequencies,
while the B1 phase of MgO has a local minimum that
decreases to almost zero at high pressure. However,
this pressure is close to the transition pressure, so we
do not expect a gap to open in the PDOS of MgO in
the B1 phase.

In Fig. 8, we compare the phonon dispersion
relations of the high-pressure phases of MgO and Be.
Contrary to what we observe for the low-pressure
phases, the high-pressure phases of MgO and Be do not
exhibit significant changes in the dispersion relations
with respect pressure. The dispersion curves of the bcc
and B2 phases of Be and MgO, respectively, are almost
identical at the two pressures considered when they are
scaled by a proper factor, where the lower pressure
corresponds to the transition pressure at 0 K. The
connections of the branches shows the same topology
at 1904 GPa with respect to 500 GPa. This means,
for example, that the ratio between the frequencies of
the TO and LO branches at the Γ point is almost the
same at low and high pressure. However, the presence
of two types of atomic species in MgO still generates a
gap in the B2 phase at the Γ point due to the LO-TO
splitting, while this does not occur in the bcc phase of
Be, despite the physical resemblance of the unit cells.



Phase diagrams of Be and MgO 10

N H P0

10

20

30

40

50
Fr

eq
ue

nc
y 

(T
Hz

)
Be (bcc)

P = 400 GPa
P = 1904 GPa

0 0.05 0.10
PDOS (THz 1)

X M R X0

10

20

30

40

50

Fr
eq

ue
nc

y 
(T

Hz
)

Be (bcc)

P = 400 GPa
P = 1904 GPa

0 0.05 0.10
PDOS (THz 1)

X M R X0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y 
(T

Hz
)

MgO (B2)

P = 500 GPa
P = 1904 GPa

0 0.05 0.10 0.15
PDOS (THz 1)

Figure 8. Phonon dispersion relations of the high-pressure
phases of Be and MgO (bcc and B2, respectively) at two different
pressures. The higher frequencies of Be at 1904 GPa have been
scaled down by a factor of 0.58, while those of MgO at 1904 GPa,
by a factor of 0.60. The X-Γ-M-R-Γ-X path for the unit cell of
the bcc structure of Be is shown in the middle panel, so that it
can be compared directly with the Brillouin zone of B2 structure
of MgO. All PDOS have been normalized to 1.

3.5. Phonon quasiparticles and anharmonic effect

In order to quantitatively describe the anharmonic ef-
fects of Be and MgO, we derive phonon quasiparti-
cles, fitting their peak and linewidth from our DFT-
MD simulation trajectories [61, 62]. In order to quan-
tify the anharmonic (excess) contribution to the vi-
brational Helmholtz free energy at a given density, we
determine the excess entropy and internal energy to
the Helmholtz free energy that results from anhamonic
contributions, defined by

∆S = Sqph − SQHA, (11)

∆U = UDFT−MD − UQHA − U0 (12)

where ∆S stands for the excess entropy beyond QHA,
which we obtained from the vibrational frequencies of
our fitted phonon quasiparticles. ∆U represents the
internal energy derived from our DFT-MD simulations
and QHA calculations, and U0 is the internal energy of
the perfect lattice from static DFT calculations.

In our previous study [35], we found that the
vibrational modes of the hcp phase of beryllium are
softened significantly compared to the bcc phase at
high temperatures, which increases the entropy and
decreases the Helmholtz free energy, stabilizing the
hcp phase. Thus, the transition pressures from the
hcp to the bcc phase increase due to this anharmonic
effect. When we derive the phonon quasi-particles
for MgO, we find that the anhamonic contributions
at high temperature make the entropic term, −T∆S,
sharply decrease with temperature for the B1 phase,
as we can see Fig. 9, making this low-pressure phase
more stable at higher temperatures compared to QHA
results. In contrast, the excess entropy (anharmonic)
of B2 phase decreased with increasing temperature,
which increases the overall Helmholtz free energy
(see the red solid curve in Fig. 9). The vibration
modes of B2 MgO on average become stiffer at high
temperature with a free energy increase on a order of
∼ 0.1 eV/atom, which is contrary to the behavior of B1
phase and accounts for the increase of B1-B2 transition
temperature and triple point temperature. Our
resulting free energy excess obtained via the phonon
quasiparticle method are in a good agreement with the
calculations carried out by Bouchet et al. [29] where
they also predict that the −TS term in Helmholtz free
energy of the B1 phase decreases considerably with
temperature, compensating the rise in internal energy.
Conversely, the internal energy of the B2 phase remains
approximately constant, while the −TS term increases
with temperature. We found the average frequency of
B2 MgO to slightly increase with temperature. This
is in agreement with the projection quasi-harmonic
approximation (PQHA) method [17, 86] which also
predicted a moderate stiffening effect of B2 MgO.
This is also confirmed by the phonon density of state
(PDOS) at T = 4000 K in Fig. 10 where the frequencies
of B2 MgO are generally shifted to higher frequencies
while the PDOS of B1 MgO to lower ones.

4. Conclusion

We systematically compared the phase dia-
grams of Be and MgO and provided a de-
tailed characterization of the phonon band
structures, assessing the anharmonic contribu-
tions via phonon quasiparticles and thermody-
namic integration that allowed us to identify the
source of the anharmonicity. We also derived
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secondary shock Hugoniot curves and studied
its relation to the melting line.

Both materials have very different bonding
and electronic properties. Be is an electrical
conductor governed by metallic bonding while
magnesium oxide is an insulating, ionic mate-
rial. Still both materials share many properties at
megabar pressures: 1) With two solid phases separated
by a line with a negative Clapeyron slope, their phase
diagrams are similar. Anharmonic effects increase the
stability field of the lower-pressure phase, which shifts
the solid-solid-liquid triple point to higher pressures.
2) The principal shock Hugoniot curve remains pre-
dominantly in the lower-pressure solid phase but still
enters the higher-pressure phase for a small pressure

interval just before melting. 3) There is a drop in tem-
perature when a shock Hugoniot curve enters a denser
solid phase. Conversely there is an increase in temper-
ature and pressure upon melting. We found that the
gap between solid and liquid branches of the secondary
Hugoniot curve widens when the shock started from a
higher initial pressure, P0. Our secondary shock Hugo-
niot curves differed from the measurements by Hansen
et al. and more work will be needed for experimen-
tal and theoretical methods to converge onto a single
phase diagram for MgO.

We found that both versions of Lindemann’s law
to be unreliable to predict the melting of Be and MgO
at megabar pressures. It assumes that on the melting
line, the root-mean-squared displacement of the atoms
is a constant fraction of the nearest-neighbor distance.
However, we found this fraction to vary by up to
50% when we calculated it with molecular dynamics
simulations that included anharmonic effects. When
we calculated this fraction within the harmonic
approximation, it did not vary nearly as much but still
deviation of 10−20% were identified.

Regarding the anharmonic contribution to the free
energy of the solid phases, we found from either of
our TDI or phonon quasiparticle calcualtions, that
anharmonic effects help to stabilize the low-pressure
phases of both materials, namely, hcp beryllium and
B1 MgO, dominated by a large entropy source from
softened vibrational modes. We hope our research
sheds lights on the research fields of material
science and geoscience and possibly helps unveil
universality laws of anharmonicity of more
complex types of materials in the future.
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[57] González-Cataldo F, Wilson H F and Militzer B 2014 The
Astrophysical Journal 787 79

[58] Frenkel D and Smit B 2001 Understanding molecular

https://doi.org/10.1103/PhysRevLett.125.175701 https://link.aps.org/doi/10.1103/PhysRevLett.125.175701
https://doi.org/10.1103/PhysRevLett.125.175701 https://link.aps.org/doi/10.1103/PhysRevLett.125.175701
https://doi.org/10.1103/PhysRevLett.125.175701 https://link.aps.org/doi/10.1103/PhysRevLett.125.175701
http://link.aps.org/doi/10.1103/PhysRevB.81.054110 https://link.aps.org/doi/10.1103/PhysRevB.81.054110
http://link.aps.org/doi/10.1103/PhysRevB.81.054110 https://link.aps.org/doi/10.1103/PhysRevB.81.054110
http://link.aps.org/doi/10.1103/PhysRevB.81.054110 https://link.aps.org/doi/10.1103/PhysRevB.81.054110
https://link.aps.org/doi/10.1103/PhysRevB.99.094113
https://link.aps.org/doi/10.1103/PhysRevB.99.094113
https://link.aps.org/doi/10.1103/PhysRevB.82.104118
https://link.aps.org/doi/10.1103/PhysRevB.82.104118
https://link.aps.org/doi/10.1103/PhysRevB.104.014103
https://link.aps.org/doi/10.1103/PhysRevB.104.014103
https://link.aps.org/doi/10.1103/PhysRevB.50.17953
https://link.aps.org/doi/10.1103/PhysRevB.50.17953
https://link.aps.org/doi/10.1103/PhysRevB.59.1758
https://link.aps.org/doi/10.1103/PhysRevB.59.1758
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
2008.08459
http://aip.scitation.org/doi/10.1063/5.0017555 http://arxiv.org/abs/2008.08459
http://aip.scitation.org/doi/10.1063/5.0017555 http://arxiv.org/abs/2008.08459
http://scitation.aip.org/content/aip/journal/jcp/143/16/10.1063/1.4934348
http://scitation.aip.org/content/aip/journal/jcp/143/16/10.1063/1.4934348
https://link.aps.org/doi/10.1103/PhysRevB.16.1748 https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.16.1748 https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.16.1748 https://link.aps.org/doi/10.1103/PhysRevB.13.5188
http://aip.scitation.org/doi/10.1063/1.448024
http://aip.scitation.org/doi/10.1063/1.448024
http://aip.scitation.org/doi/10.1063/1.3372805
http://aip.scitation.org/doi/10.1063/1.3372805
https://link.aps.org/doi/10.1103/PhysRevLett.104.121101
https://link.aps.org/doi/10.1103/PhysRevLett.104.121101


Phase diagrams of Be and MgO 13

simulation: from algorithms to applications vol 1
(Elsevier)

[59] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P
2001 Reviews of modern Physics 73 515

[60] Togo A and Tanaka I 2015 Scr. Mater. 108 1–5
[61] Carreras A, Togo A and Tanaka I 2017 Computer Physics

Communications 221 221–234
[62] Zhang D B, Sun T and Wentzcovitch R M 2014 Physical

review letters 112 058501
[63] Wallace D C 1972 American Journal of Physics 40 1718–

1719
[64] Coppari F, Smith R F, Wang J, Millot M, Kim D, Rygg

J R, Hamel S, Eggert J H and Duffy T S 2021 Nature
Geoscience 14 121–126 ISSN 1752-0894 URL http:

//dx.doi.org/10.1038/s41561-020-00684-yhttp:

//www.nature.com/articles/s41561-020-00684-y

[65] Stixrude L 2012 Physical Review Letters 108 055505
ISSN 0031-9007 URL http://link.aps.org/doi/10.

1103/PhysRevLett.108.055505
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