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1 Introduction

The low-autocorrelation binary sequence (LABS) problem has a simple formulation. Con-
sider a binary sequence of length L, S = s1s2...s and their autocorrelations Cj(S) =
Zfz_lk 8iSitk,Si = {+1,—1}, for k =1,...,L — 1. The energy function of interest is

E(S)=>_C}(S) (1)

which defines the merit factor F of the sequence [1]:
F=1%/(2E). (2)

The objective of optimization is to find a sequence that maximizes F, or equivalently,
minimizes F. Finding an optimum sequence has important applications in communication
engineering and is also of interest to physicists since the sequence models one-dimensional
systems of Ising-spins. The solution of the LABS problem corresponds to the ground state
of a generalized one-dimensional Ising spin system [2]. The problem as formulated in (1)
is NP-hard or worse, unlike the special cases of the Ising spin-glass problems with limited
interaction and periodic boundary conditions evaluated in [3, 4]. While efficient and effective
methods have been presented to solve the special cases up to L = 400 [3, 4], the optimal
merit factors for the problem as formulated in (1) are presently known for values of L < 60
only [5, 6]. The difficulty of the LABS problem arises not only from the inconsistency or
frustration of different energy interaction terms [7] but also from the fact that for most
values of L, the number of global optima is relatively small, as shown in Table 1. The
results as reported in Table 1 are a by-product of the approach we introduce in this paper.

The asymptotic value for the maximum merit factor F' is known [1] and has also been
re-derived using arguments from statistical mechanics [2]: as L — oo, F' — 12.3248. In
Figure 1, we plot the currently known values of the merit factor as the function of L,
normalized with respect to 12.3248. The values for L < 60 are based on a branch-and-
bound solver and are thus known to be optimal [5, 6]. For L > 60, the values are based
on the best known merit factors reported by stochastic search solvers [8, 9, 10, 11, 12], and
also on the work in this paper. It shoud be noted that these results are significantly better
than the solutions based on simulated annealing in [2].

Table 1: The number of optimal sequences for the LABS problem. The values listed for
L < 35 are exact. For L > 35, the values are based on our experiments to date. Some are
rounded to the nearest integer multiple of 4. For odd values of L, the number of optimal
sequences that are skew-symmetric is shown between the brackets.

L{o 1 2 3 4 5 6 7 8 9

1(4) 8 4(4) 28 4(4) 16 24(8)
10 | 40 4(4) 16 4(4) 72 8(8) 32 44(4) 16 8(0)
20 | 8 4(4) 24 24(0) 8 8(0) 24 4(4) 8  8(8)
3016 80) 8 80) 8 80) 8 80) 8 8(8)
40 | 8 4(4) 8 4(4) 8 4(4) 24 28(20) 8 12(4)
50 [ 12 4(4) 8 8(4) 8 8(8) 8  4(4) 8 12(4)
60 | 12 8(0) 12 4(0) 4
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Figure 1: Exact optima and the best known figures of merit for the low autocorrelation binary
sequences, normalized to the asympotic limit of 12.3248. The exact optima are known only for
L < 60. The regression line is based on the least-square fit to the data points shown. There
clearly is a significant ‘gap of opportunity’ for the new generation of LABS solvers, starting
at L > 100.

The simple formulation and the known asymptotic value for large values of L makes the
LABS problem a particularly interesting case of a problem that is most likely NP-hard or
worse. As depicted in Figure 1, the problem presents a significant challenge not only to
the branch-and-bound solvers but also to the stochastic solvers: while the exact figures of
merit, limited to values of L < 60, follow the expected trend, the figures of merit reported
by current heuristics for values of L > 100 are clearly diverging from the expected trend.
Questions that arise include: (1) are the current stochastic solvers inadequate for the task,
(2) are the solvers being terminated prematurely, and (3) is the current trend due to some
combination of (1) and (2). We argue that the most likely answer is (3) and that the
problems for L > 100 may be solved better with improved solver technology. Consider, for
example, the advances in solving problems in satisfiability (SAT). Real-world SAT problems
with 100s of decision variables can today be solved routinely and reliably using branch-and-
bound SAT solvers as well as stochastic SAT solvers [13].

Our approach to finding the optima of the LABS problem is based on combining three
principles into a single method: (1) solver performance experiments with problem sizes for
which optimal solutions are known, (2) an asymptotic statistical analysis of such experi-
ments, (3) reliable predictions of the computational cost required to find optimal solutions
for larger problem sizes. Two factors motivated the inclusion of an evolutionary search (ES)
solver in this work: (1) the best results for L > 100 reported to date in the open literature
are based on an ES-based LABS solver [10], and (2) the predictions of computational cost
with our version of the LABS solver, which made our solver appear too expensive [14] for
L > 100. It should be noted that while it was obvious from our experiments that our
solver is highly efficient computation-wise when compared to the branch-and-bound solver
as reported in [5] (for values of L < 60), we could not conclude one way or the other with
respect to the ES-solver — until both solvers were installed on the same platform and under
the same termination criteria. Subsequently, we demonstrate in the paper that the proposed
methodology provides a well-defined termination criterion for evolutionary and alternative
search algorithms alike.



The paper expands on our work as reported in [15] and is organized as follows. Section 2
briefly introduces two very different LABS solvers and the termination criteria that we apply
to both, Section 3 defines the experimental set up that remains identical for both solvers,
Section 4 summarizes the asymptotic performance of both solvers under termination crite-
rion ‘A’ for L < 47, Section 5 summarizes the predictions and the asymptotic performance
of the LABS solver of choice under termination criterion ‘B’ for L > 47, Section 6 addresses
few questions that arise in view of the reported experimental results, Section 7 outlines
conclusions and future work.

2 LABS Solvers and Termination Criteria

We introduce two LABS solvers at a level that will support a thorough one-on-one compar-
ative analysis for both solvers. Evolutionary search (ES) techniques introduced in [16, 17]
provide the background for the ES-solver that has been devised and optimized explicitly
for the LABS problem [10]. Our alternative LABS solver, the KL-solver, is based on prin-
ciples introduced in the classical graph partitioning paper by Kernighan and Lin [18] and
subsequently adapted to hypercube embedding [19, 20].

2.1 ES Solver

Evolutionary strategies (ES) in its standard form start with an initial parent population of
A binary strings, each of length L, and generated at random. Then g children strings are
generated, each by selecting a parent at random and applying a randomly chosen mutation
operation to it. From the u children strings, one selects the A best individuals, which form
the next parent population. The process is repeated until a termination criterion is met.
Termination criteria are discussed later in this section. Militzer et al. [10] developed a
novel mutation operator that appears to work particularly well for the LABS problem. A
flowchart view of the ES-solver as it traces the LABS problem landscape (for L = 7) is
shown in Figure 2. Clearly, with a single decision point, its ‘control structure’ at the level
shown is very simple — compared to the control structure at the same level for the KL-solver,
to be discussed shortly.

The main objectives of showing the traces below the ES flowchart are the following: (1)
even for L = 7, the energy cost (or fitness) function can vary two-orders of magnitude; (2)
for choices of A = 3 and and p = 5, and running the solver for 4 generations (a total of 23
samples) returns a local optimum solution with the energy cost of 7; (3) for choices of A =3
and and g = 5, and running the solver for 9 generations (a total of 48 samples) returns a
global optimum solution with the cost of 3. Of course, the choice of the ES parameters in
this example is for simplicity of illustration only; we discuss the actual values used in the
section that follows.

2.2 KL Solver

Our implementation of the KL solver samples the LABS cost function in a sequence of
well-defined moves, starting from a randomly chosen initial binary string and evaluating the
distance-1 neighborhood of this string (flipping 1-bit at a time). We mark the bit for which
the cost function was minimum and now repeat the process of evaluating the distance-1
neighborhood, but now only with respect to the bits that are left unmarked. After the last



Evolutionary strategy (ES) solver: key procedures and decisions
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Figure 2: A flowchart view of the ES-solver as it traces the LABS problem landscape.



Kernighan-Lin (KL) solver: key procedures and decisions
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Figure 3: A flowchart view of the KL-solver as it traces the LABS problem landscape.



marking of the bits, we have evaluated L * (L —1)/2 samples. We use the ‘best string’ from
this search as the new starting point for the new sweep of distance-1 move set (after first
unmarking all of the bits). These sweeps are terminated once a new sweep produces a ‘best
string’ that is not better than the one saved from the previous sweep. At this point, the
process is repeated with a new randomly selected string until a termination criterion is met.
Termination criteria are discussed later in this section. A flowchart view of the KL-solver as
it traces the LABS problem landscape (for L = 7) is shown in Figure 3. Clearly, with three
decision points, the ‘control structure’ at the level shown is not as simple when compared to
the control structure at the same level for the ES-solver discussed earlier. For more details
about the KL-solver algorithm, see the Appendix.

The main objectives of showing the traces below the KL flowchart are the following: (1) even
for L = 7, the energy cost (or fitness) function can vary two-orders of magnitude; (2) unlike
for ES, no user judgment is required to set-up the parameters that govern the selection of
strings. For simplicity of illustration only, we make the decision that ‘all bits have been
marked’ at the value of 7 — 7/2 = 4, so that each sweep contains only (7 + 6 + 5) = 18
samples. Here, we terminate after 0 restarts (a total of 37 samples) and return a local
optimum solution with the energy cost of 7; (3) Similarly to (2) above, we terminate after
1 restart (a total of 55 samples) and return a global optimum solution with the energy cost
of 3.

2.3 Termination Criteria

The simplest termination criterion in a stochastic search solver is the maxium time du-
ration (timeout) of the experimental run from a given starting point. Such criterion is
platform-dependent. However, even if the two LABS solvers such as ES-solver and KL-
solver described above are being executed on the same platform under the same timeout
limit, we may learn very little about what factors may account for the significant difference
in the observed performance of the two solvers. Note also that that the flow-chart level, the
combinatorial metrics decide the termination for each solver are different: the maximum
number of generations (ES) versus the maximum number of restarts (KL). However, if we
count the number of samples, i.e. cost function evaluations performed by each solver, we do
have a metric that is common to both. Experiment show that samples correlate perfectly
with runtime (in seconds) of either solver.

To improve the efficiency and the reliability of the solver selection process, we organize the
experiments under two termination criteria [14]:

e Termination criterion ‘A’ (for L < 47). Use the known LABS minimum value for a given
L to terminate a local search algorithm when the optimal sequence is found for the
first time. Variables recorded during this search include, at the minimum, runtime
and samples (the number of cost function evaluations) that are required to find the
optimum. Both are random variables for which we find statistics so we can deduce the
probability of success, Psyee, of finding the LABS minimum value, given the runtime
or samples constraints.

e Termination criterion ‘B’ (for L > 47). Develop a predictor model based on results under
Termination A to predict, for a given value of L, the required runtime and/or required
samples for which the solver must be allowed to run in order to find the global minimum
with the probability of success Psyc.. The value of required samples must be used as
the termination criterion ‘B’ if experiments are executed on a platform different from
the one used under the termination criterion ‘A’.



Of course, we will run only the ‘best-of-the-two’ from KL-solver and ES-solver under the
termination B (for the given value of L).

We summarize the details of experimental set-up in the next section. In particular, we
demonstrate that experiments under the termination criterion ‘A’ lead to a number of
important insights about the asymptotic and statistical performance of each solver.

3 Experimental Setup

The experimental testbed we use is outlined in Figure 4. Each experiment is initialized with
a unique random seed from the file random Triplets that contains three random integers on
each line, making the testbed environment cross-platform consistent for any LLABS solver
that uses the standard IEEE random generator. Under the criterion ‘A’, the termination of
each execution is controlled by the known optimum value stored in the file knownOptima,
available at [6].

Data of most interest generated by these experiments are runtime (seconds, platform-
specific) and samples (total number of samples to evaluate the cost function, platform-
independent). These two random variables are closely correlated and, not surprisingly, both
will have exponential distribution for both ES and KL solver.! While the exponential dis-
tribution of runtime or samples implies significant variability as illustrated in Figure 4, the
variability is also predictable — shown by the close fit of observed and theoretical distribu-
tions. For example, if we allow the KL solver to search for the optimum sequence of length
L = 34 for 3,088,247 samples (from any randomly choosen initial sequence), the probability
of finding the optimum is 0.632. However, if we increase the search limit to 4*3,088,247
samples or 8*%3,088,247 samples, the probability increases to 0.981 or 0.999 respectively.

The parameters used for all ES-solver experiments are based on settings evaluated as ‘best
overall’ in [10]: A = 10 and p = 3 % L. The single parameter used in KL-solver experiments
is bits-to-mark = L/2. This is different from a default value of bits-to-mark = L since we
observed no significant improvement (with respect to the LABS problem) if we marked all
bits of the mowve set as defined in Figure 3.

Thus, before starting the experiments with the two solvers, we made every effort not to
violate the “PET PIEVE 10. Hand-tuned algorithm parameters’ that concludes with a
recommended rule as follows [22]:

If different parameter settings are to be used for different instances, the ad-
justment process must be well-defined and algorithmic, the adjustment must be
described in the paper, and the time for the adjustment must be included in all
reported running times.

We analyze the statistical performance of each solver in the next section.

IExponential distribution of runtime has been observed not only for stochastic solvers in different con-
texts [21], but also within a unified framework for stochastic and branch-and-bound solvers applied to SAT
problem instances [13]. Distributions other than exponential have also been observed in a number of related
experiments with several solvers [13].



Experiments under termination ‘A’

Create LABSbed as a LABS-problem specific testbed environment, simpler
than but similar to SATbed [23]. We consider (1) primary input files
randomTriplets and knownOptima, (2) user-specified parameters L, solverList,
nEzxperiments, (3) a solver encapsulator SOLVERENCAP_A( L, random Triplets,
knownOptima, solverList, nEzperiments ) that returns rawData(solver, L),
and (4) GETSTATS( rawData(solver, L) ) that returns statsData(solver, L).

Invoke SOLVERENCAP_A to return a tabular report rawData(solver, L) for each
solver and each L, with data columns under labels such as instanceNum,
runtime, samples, solution. The number of rows is determined by
nEzxperiments. For the same value of L, each experiment represents an equiv-
alent problem instance, initialized by the LABS solver with a different random
seed triple from the file random Triplets.

Invoke GETSTATS to return various statistics for random variables in each data
column in rawData(solver, L), including characterization of underlying distri-
butions and the respective solvability functions [23]. As shown below, the
number of samples (or function evaluations) required by the KL solver to find
the optimum solution for L = 34 for each of the 128 experiments has exponen-
tial distribution and can vary dramatically. At best, an optimum solution is
found with 43,354 samples; at worst with 13,322,800 samples; with a median,
mean and standard deviation of 2,11,5035 and 3,088,247 and 3,006,546 sam-
ples, respectively. The runtime mean value, specific to our platform (a Linux
PC with 266 MHz processor), is 6.60 seconds. Hyperlinks to complete raw
and statistical results of experiments such as illustrated here, covering several
solvers, and values of L up to 64 can be found on the newly created LA BSbed
home page [24].
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Figure 4: Experimental flow under termination 'A’ (for any solver).

4 LABS Solver Comparisons

To capture the asymptotic performance of the ES and KL solver under the termination
‘A’ with statistical significance, we performed 128 experiments with each solver for each
value of L in the range of 10 < L < 47. Similarly to Figure 4, we observe for each L
an exponential distribution of runtime and samples for both solvers. Also, we observe



exponential distribution for generations (ES solver) and restarts (KL solver).?. However,

with 128 trials the distribution of the reported means for each of these random variables
is near-normal due to the law of large numbers. Also with 128 trials, two means with
comparable standard deviation will pass a standard t-test for equivalence, at confidence
level of 95%, as long as their ratios are bounded by 4/3 from above and 3/4s from below.
In other words, after 128 independent experiments, we shall declare two LABS solvers such
as ES and KL to have significantly different performance only if the ratio of their means
exceeds 4/3 or is less than 3/4. For example, in Figure 4 we report for the value of L = 34,
the mean number of samples as 2,925,765 (ES solver) and — slightly better than the mean
number of samples 3,088,427 (KL solver). A t-test declares both means to be equivalent,
and a x2-test declares both distributions to be equivalent.

Comparison with a single value of L is not sufficient; we rely on the asymptotic analysis for
averages and ratios of averages based on 128 experiments for consecutive values of L = 10
to L = 47 for both KL and ES solvers. As shown in Figure 5, we pair data reported by
the two solvers in terms of average samples, average runtime (in seconds), and the sampling
efficiency defined as the ratio of the average number of samples to the average runtime.
For each set of data we also show a regression line that nominally predicts the asympotic
behavior of each solver beyond the value of L = 47:3

ES_samples predictor = 5.558E+1 x 1.370% (3)
ES _runtime predictor = 7.108E—4 x 1.397% (4)
ES_efficiency predictor = 7.819E+4 x 0.981% (5)
KL_samples predictor = 1.553E+1 x 1.423% (6)
KL_runtime predictor = 1.287E-5 x 1.463" (7)
KL_efficiency predictor = 1.206E4+6 x 0.973F (8)

Note however, that not all mean values for L < 47 we report are actually on a given regression
line. For example, for the the ES-solver, we observe data points up to a factor of 2.0 above
and 1.7 below the nominal ES_samples predictor — until we reach the value of I = 43. At this
value, we record a nearly 14-fold increase above the nominal ES_samples predictor. Also,
there is a reduction by a factor of 4.3 at L = 46. Such variability is statistically significant
as it clearly exceeds the [3/4, 4/3] bounds expected due to statistical variability alone. As
our detailed analysis in the next section suggests, the variability of the solver may be due
to two factors: (1) significant change of LABS problem landscape with change of L since
the number of optimal solutions may vary significantly as illustrated in Table 1, and (2)
partial mismatch of ES-solver parameters for the given value of L. Additional consecutive
data points are needed to more completely characterize the asymptotic performance of the
ES-solver; its performance variability may or may not exceed the variability demonstrated
for the KL-solver up to the value of L = 64 in the section that follows.

For the KL-solver, we observe data points up to a factor of 4.0 above and 3.6 below the
nominal KL_samples predictor — uniformly across the observed range. Again, such variations
by far exceed the expected statistical variations of the mean values. However, as shown in
Figure 5, the sampling efficiency for the KL-solver is subject to noticeably smaller variations
than the sampling efficiency for the ES-solver. We thus conjecture that the variability
observed for the KL-solver is mostly due to the variability of the LABS problem landscape
with change of L.

2We remind the reader that when we observe that distribution is exponential, mean~sstandard deviation
30nly the consecutive values of L = 20 to L = 47 are used in the least-square fit to each data set. Data
points for the ES-solver for L = 50,54, 58 are shown for illustration only.
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Asymptotically, the nominal performance of the ES-solver appears better: there is a crossover
of the samples predictors at L = 34 and the runtime predictors at L = 88. However, these
crossovers are not well-defined due to the demonstrated variability and most importantly,
there is a significant difference in the sampling efficiency between the two solvers; for L = 34
the average runtimes are 6.60 and 74.5 seconds for KL and ES, respectively. A significant
improvement of the sampling efficiency of the ES solver is needed to make it competitive,
for L < 88, with the current version of the KL solver.

Experiments as report here were executed on 266 MHz workstation under Linux. The
current platform is clearly unsuitable for experiments at L > 88 even with the faster-of-the-
two solvers. For L = 77, the projected runtime (using 1.552e-8%1.419% for the KL-solver) is
0.94 years; if the processor performance would increase tenfold, it would still take 1.1 years
to complete similar runs for L = 84. What is needed is a LABS solver with both (1) runtime
complexity significantly better than O(1.419%) and (2) constant factor significantly better
than 1.552e-8 relative to our 266 MHz platform.

However, as presented in the next section, we can demonstrate the reliability of the cost
predictor under the termination ‘B’ for the KL-solver in the range of 48 < L < 64 and
slightly beyond.

5 Cost Predictions under Termination ‘B’

We ask the question: ‘How long should the KL solver run in order to find the optimum for
a given L with a certain probability of success Psye.?” We find the answer by analyzing the
asymptotic behavior of either runtime, samples or restarts of the KL solver under termination
criterion ‘A’. An example of restarts data is shown in the top part of Figure 6. The average
values of restarts are based on 128 experiments for consecutive values of L = 20 to L = 47.
Also shown are three regression lines derived from the observed data for L < 47 and data
points as predicted by the respective regression lines for values of L > 47:

nominal restarts predictor = 0.1351 x 1.331% (9)
upper bound restarts predictor = 0.6754 x 1.331F (10)
lower bound restarts predictor = 0.0270 x 1.331% (11)

According to the nominal restarts predictor in (9), the number of required restarts to find the
optimum with Ps,.. = 0.632 for L = 48,60, and 64, is 123,851 or 3,832,423 or 12,031,820,
respectively. However, not all average restarts reported by the KL-solver are ‘on the line’
that corresponds to the nominal restarts predictor. In fact, the mazimum deviations from
the nominal predictions for required restarts for the range of 20 < L < 47 are very significant:
for L = 26 the prediction is far too conservative (229 restarts predicted, 64 observed, a ratio
of 3.59), for L = 41 the prediction is far too optimistic (67,375 restarts observed, 16,726
predicted, a ratio of 4.03). Such variations by far exceed the expected statistical variability
of the observed mean values of restarts: the 95% confidence intervals for the observed mean
values are [52 ... 77] for L = 26 and [55,527 ... 79,222] for L = 41, respectively. The
empirical upper bound restarts predictor in equation (10) simply multiplies the nominal
restarts predictor by a factor of 5 which is based both on the worst-case ratio of 4.03 and the
observed confidence interval for mean restarts at L = 41. Using the upper bound restarts
predictor, the number of required restarts for L = 41 has the value of 81,380. Similarly, the
empirical lower bound restarts predictor divides the nominal restarts predictor by a factor
of 5. Clearly, such bounds may need to be adjusted for larger values of L when more
experimental data becomes available.
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(a) restarts predictions for the termination criterion ‘B’

v restarts_predictor_ub (O(1.331L))
e restarts_predictor_nom (O(1.3317L))

A restarts_predictor_Ib (O(1.3317L))

1E+9 5+—
(2] * E © restarts_observed (O(1.3317L)) y
3 1E+81— )
< = runtime_hours (O(1.419/L))
£ 1E+7+ : : : r'"'x,o'e.‘wﬂgﬂ
5 ] i ...... M
2 1E+64— restarts_predictor_ub = Pt 0
o ] 067547 1331°L 1 ‘.«0'::,
© 1E+54— > O [
2] ] [c]l¥oadlo
% 1E+4 95958 restarts_predictor_nom = |
8 1E+3; Vo 0.1351 * 1.331°L a
Q E O Yo
S 1E+2—;®<Q/ i 1
g L -
£ 1Ee1] hours = 1.552E-8 * 1.41&::...;5'!.
ro) ]
5 1E+0
x 1
20 25 30 35 40 45 50 55 60 65 70

LABS length (L) vs KL-termination predictors & observed hours

(b) summary of experiments based on predictions above

L EL ., Epin nExpr nHits uSols  hitR  hours®
48  14016] 140 16 11 7 0.6875 0.3
49 136[6] 136 16 12 9 0.75 0.4
50  153]6] 153 16 15 11 0.9375 0.6
51  153]6] 153 16 5 3 0.3125 0.8
52 166[6] 166 16 12 7 0.75 1.2
53 170]6] 170 16 12 8 0.75 1.7
54 1756 175 16 10 6 0.625 2.4
55 171[6] 171 16 14 7 0.875 3.5
56  192]6] 192 16 16 7 1 5.0
57  188]6] 188 16 11 3 0.6875 13.2
58 197(6] 197 16 13 7 0.8125 9.8
59  205]6] 205 16 16 9 1 13.9
60  218]6] 218 16 16 10 1 20.0
61  226[12] 226 16 10 6 0.625 27.7
62 235[12] 235 16 16 10 1 38.8
63 207[12] 207 8 6 2 0.75 55.0
64  208[12] 208 4 2 2 0.5 78.6

values shown for L < 61 are known to be optimal.
2runtime required to execute each experiment on

a 266 MHz workstation under Linux.

Figure 6: Termination criterion ‘B’ results with KL solver.
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The effectiveness of these predictors as the termination criterion ‘B’ is demonstrated by a
series of experiments with 48 < L < 64 on a cluster of 4 workstations, summarized in the
table in Figure 6. Using the nominal restarts predictor in equation (9), we performed 16
experiments for each 48 < L < 62, 8 experiments for L = 63, and 4 experiments for L = 64.
The columns reported in the table refer to sequence length (L), best known minimum (Epest),
best minimum reported by KL solver (E,,:,), number of experiments (nEzpr), number of
times E,;p, is found (nHits), number of unique solutions reporting Fy,;, (uSols), hit ratio
of nHits versus nEzpr (hitR), runtime required to execute each experiment (hours on a 266
MHz workstation under Linux).

Assuming that the nominal restarts predictor values that terminate each run are ‘correct’,
we expect each experiment to find the optimum with Pjsy,.. = 0.632, i.e. we expect all E,in
to match or improve on Ep.s; and the hit ratio to be 0.632. For 17 values of L in this
exploratory study, we observe a hit ratio mean of 0.768 with a standard deviation of 0.191 —
somewhat better than expected. The most likely reason is that for most values of L in this
range, the true (and unknown) mean restart values are below the regression line in Figure 6.
For example, finding 16 hits out of 16 experiments for L. = 60 implies that the predicted
mean value of 3,832,423 restarts should really be reduced by a factor of 3, 4, or 5.

Now, we cannot say that the values of E,,;, we report for for L > 60 are exact optima.
However, given the experimental results at hand, the minima reported for 16 experiments
with a hit ratio greater than or equal to 0.625 are the likely optima. If this threshold is
not maintained, the number of restarts must be increased until we reach the threshold. To
increase the overall reliability of the predictions, we can also increase the number of experi-
ments while maintaining the hit ratio close to 0.632. Increasing the number of experiments
for L = 63,64 is in progress, with experiments for L > 64 to follow.

Compared to performance of earlier algorithms, the performance of the KL solver under the
termination criterion B as shown in the graph and the last column of the table in Figure 6
is very effective: for L = 60 it took 16 x 20 = 320 hours to find not only one optimum
solution but 16 solutions from which 10 optima were found to be unique. As shown in the
graph, the runtime complexity of this solver is O(1.42F). The question arises, how much
better can we do with an alternative solver.

6 Updates on Current Experiments

Since the two LABS solvers in this work are so different, a number of interesting question
arose during and after the presentation of the preliminary work on this project [15]:
e Why does the KL-solver always restart from a strictly random bit string?

e What happens if the ES solver generation is periodically restarted with random parent
strings?

e How ‘optimal’ are the settings for the ES-solver?

We conducted additional experiments to provide some in insights to these questions.

Settings for ES-solver. The parameters used for all ES-solver experiments reported in
carlier sections are based on settings evaluated as ‘best overall’ in [10]: A = 10 and p = 3% L.
We conducted a number of experiments under termination ‘A’ where we vary the size of ES
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Figure 7: The effect of varying the size of ES population u on the cost of finding the optimal
solution. The cost is reported as the average total number of samples (based on 128 experiments).

population such that the p/L ratio varies in increments of 1, from 1 to 6 typically. Results
of 128 experiments for values of L =24-28 and L =35-39 are shown in Figure 7: rather than
reporting runtime as the average cost, we report the number of samples required to find the
specified optimum energy. Notably, the ratio of /L is 3 only for L = 27 and L = 35. For
other values, the better ratio may be 4, 5, and possibly 6. This sensitivity to the value of this
ratio as L is varied may be a factor in the variability we observe in the earlier experiments
with the ES-solver.

Restarts for ES-solver? In these experiments, we keep the nominal values of A = 10 and
p = 3 * L constant. However, we introduce the ratio gM = generationsyqa./L. We now
launch 128 experiments under the termination ‘A’ for several values of gM and observe the
number of average number of samples required to find the optimum for each setting. When
gM — oo, we have the nominal ES-solver with 0 restarts. For gM < oo, several restarts
may be required before the ES-solver finds the optimum value and terminates. We show
the result of experiments for L = 27,28 in Figure 8. Note that the variability ratio in the
average number of samples relative to the value reported for O-restarts is within an interval
[3/4, 4/3] which implies that for L = 27,28, we cannot distinguish between the ES-solvers
with no restarts and with restarts — as long as the ratio gM > 1.

Improved restarts for KL-solver? There are problems and solvers for which restarts
that ‘remember’ some fraction of earlier local optimum solution may benefit the average
solver performance, e.g. [25]. However, as our experiments in Figure 9 demonstrate, this
heuristic does not seem to work well with the LABS problem and the KL solver. In fact,
we don’t know how much we need to perturb the currently returned local optimum solution
before we restart. The experiments for L = 27,28 demonstrate that the KL-solver has the
best performance when each restart takes place from an completely random string.
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Figure 8: The effect of varying the mazimum number of ES generations before a random restart on
the cost of finding the optimal solution. Upon reaching the specified maximum, a new generation
restarts from a randomly selected seed. No restarts are required for the right-most point (at
gM/L = 1000). The cost is reported as the average total number of samples (based on 128
experiments).
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Figure 9: The effect of varying the distance of previous best solution to initialize each successive
KL-restart. We vary the distance by randomly flipping k bits, £ < L, in the best local solution.
The KL local neighborhood prozimity ratio is defined as 2k/L. The cost is reported as the average
total number of samples (based on 128 experiments). Results reported for ratio of 1 are statistically
equivalent to experiments with strictly random initialization of each KL-restart.
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7 Conclusions and Future Work

We have demonstrated a methodology that, while not guaranteeing optimum solutions for
LABS problem, finds optima with high degree of confidence. For values of L < 88, the
present solver of choice is KL since it has similar scaling properties to ES while generating
new sequences at a significantly faster rate. Our methodology, to compare two LABS solvers
not only in terms of runtime but also samples required to find optimal solutions, provides
new insights about the effectiveness and the efficiency of evolutionary strategies. Compared
to KL, the ES-based search for optima may require significantly less samples (on average)
as the problem size increases, however the challenge to reduce the cost of computing these
samples should be addressed next by the ES-based search algorithms. The challenge for
KL-based algorithms is clearly to reduce the number of samples required to find optimal
solutions.

A unique feature, intrinsic to the approach in this paper is the generation of multiple solu-
tions for a given value of L. The number of these solutions in Table 1, introduced earlier
is exact for values of L < 35. For values of L > 35, the values listed are conjectured from
our experiments to date. A total of 400 experiments under termination A’ have been run
for L <= 47, so values listed are most likely exact. Values for L > 47 are based on smaller
number of experiments as listed in the table of Figure 6. Since it is clear that the number
of solutions must always be a multiple of 4, we have rounded the solutions found to the
nearest such value. For example, when we report the number of solutions for L = 60 as 10
in Figure 6, we report 12 in the table above. We anticipate new insights by (a) correlating
the number of solutions to the observed and predicted variability in solver performance and
(b) analyzing solution structures to improve the search process for the next generation of
LABS solvers.

We have just gained access to a cluster of 128 processors and plan to continue with scaling
up the experiments with improved solvers, not only to search for new optima but also to
find solutions for L > 100 that wil exhibit a converging trend towards the posted asymptotic
value. Reader is invited to visit the LABSbed home page [24], not only to access complete
archives of experimental data summarized in this paper but also to access updates on (1) on
LABS minima for values of L > 64 and a call for collaboration, (2) improved performance
of new LABS solvers, (3) status of LABSbed tutorial, documentation, and ready-to-install
solvers.

Acknowledgements. The ready access to the exact minima of the LABS problem posted
by Stephan Mertens [6] has been of great value in this research. The productive partici-
pation of the undergraduate cluster computing project team led by Jonathan B. Cage was
instrumental for the LABS validation experiments for L. = 48-60 and the LABS frontier
experiments for L = 61-64. The just-in-time table of best merit factors [12] sent to us by
Joshua Knauer also provided an update of our Figures 1 and 6.

References

[1] M. J. E. Golay. The merit factor of long low autocorrelation binary sequences. IEEE: Trans-
actions on Information Theory, 28:543-549, 1982.

[2] J. Bernasconi. Low autocorrelation binary sequences: statistical mechanics and configuration
space analysis. J. Phys., 48:559-567, April 1987.

17



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

Martin Pelikan and David E. Goldberg. Hierarchical boa solves Ising spin glasses and
MAXSAT. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2003), pages 1271-1282, 2003.

Martin Pelikan, David E. Goldberg, Jiri Ocenasek, and Simon Trebst. Robust and scalable
black-box optimization, hierarchy, and ising spin glasses. IlliGAL Report No. 2003019, Illinois
Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.

S. Mertens. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics
A: Mathematical and General, 29:473-481, 1996.

S. Mertens. Ground states of the bernasconi model with open boundary conditions, 2003. For
details, see http://odysseus.nat.uni-magdeburg.de/~mertens/bernasconi/open.dat.

M. P. Eastwood, C. Hardin, Z. Luthey-Schulten, and P. G. Wolynes. Evaluating protein
structure-prediction schemes using energy landscape theory. IBM Journal of Research and
Development, 45(3/4), 2001. Special issue on Deep computing for the life sciences.

C. de Groot, D. Wurtz, and K. H. Hoffmann. Low autocorrelation binary sequences: Exact
enumeration and optimization by evolutionary strategies. Optimization (UK), 23(4):369-384,
1993.

F.-M. Dittes. Optimization on rugged landscape: A new general purpose monte carlo approach.
Physical Review Letters, 76:4651-4655, 1996.

B. Militzer, M. Zamparelli, and D. Beule. Evolutionary search for low autocorrelated binary
sequences. IEEE Transactions on Evolutionary Computation, 2(1):34-39, April 1998.

S. Prestwich. A Hybrid Search Architecture Applied to Hard Random 3-SAT and Low-
Autocorrelation Binary Sequences. The Sizth International Conference on Principles and
Practice of Constraint Programming, Lecture Notes in Computer Science, Springer-Verlag,
1894:337-352, 2000.

J. Knauer. Home Page of LABS Problem Merit Factor Records, 2003. See
http://www.cecm.sfu.ca/~jknauer/labs/records.html.

F. Brglez, X. Y. Li, and M. Stallmann. On SAT Instance Classes and a Method for Reliable
Performance Experiments with SAT Solvers. Annals of Mathematics and Artificial Intelligence
(AMAI), , 2003. To be published. A major revision of the 2002-SAT Symposium paper. For a
preprint, see http://www.cbl.ncsu.edu/publications/ .

F. Brglez, M. F. Stallmann, and X. Y. Li. The LABS Problem and an Encapsulation of

Local Search Algorithms for Improved Performance and Reliability. Technical Report, 2003-
TRQCBL-LABS, 2003. For a reprint, see http://www.cbl.ncsu.edu/publications/.

F. Brglez, M. Stallmann, X. Y. Li, and B. Militzer. Reliable Cost Predictions for Finding Opti-
mal Solutions to LABS Problem: Evolutionary and Alternative Algorithms. In Proceedings of
The Fifth International Workshop on Frontiers in Evolutionary Algorithms (FEA2003), Cary,
NC, USA, September 26-30, 2003 , September 2003. See also http://scsx01.sc.ehu.es/-
ccwgrrom/FEA2003/ and http://www.cbl.ncsu.edu/OpenExperiments/LABS/ .

I. Rechenberg. Evolutionsstrategien - optimierung technischer systeme nach prinzipien der
biologischen information. Stuttgart-Bad Cannstatt: Friedrich Frommann Verlag, 1973.

H.-P. Schwefel. Numerical Optimization of Computer Models. New York: Wiley, 1981.

B.W.Kernighan and S.Lin. An efficient heuristic procedure for partitioning graphs. Bell System
Technical Journal, pages 291-307, 1970.

Woei-Kae Chen and Matthias F.M. Stallmann. Local search variants for hypercube embedding.
In Proceedings Fifth Distributed Memory Computing Conference, pages 1375 — 1383, 1990.

W.-K. Chen, M. Stallmann, and E.F. Gehringer. Hypercube embedding heuristics: An evalu-
ation. International Journal on Parallel Programming, 18(6):505 — 549, 1989.

Holger H. Hoos and Thomas Stiitzle. Local Search Algorithms for SAT: An Empirical Evalu-
ation. Journal Of Automated Reasoning, 24, 2000.

18



[22]

23]

[24]

[25]

D. Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms. American
Mathematical Society, 220(5-6):215-250, 2002. In Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Implementation Challenges, M. H. Goldwasser,
D. S. Johnson, and C. C. McGeoch, Editors.

F. Brglez, M. F. Stallmann, and X. Y. Li. SATbed: An Environment For Reliable Performance
Experiments with SAT Instance Classes and Algorithms. In Proceedings of SAT 2003, Sixth In-
ternational Symposium on the Theory and Applications of Satisfiability Testing, May 5-8 2003,
S. Margherita Ligure - Portofino, Italy, 2003. For a reprint, see http://www.cbl.ncsu.edu/-
publications/ .

LABSbed: LABS Problem Experiments Home Page, 2003. See http://www.cbl.ncsu.edu/-
OpenExperiments/LABS/.

K. Smyth, H. Hoos, and T. Stutzle. Iterated robust tabu search for MAX-SAT. In Proceedings
of the 16th Canadian Conference on Artificial Intelligence (AI 2003), 2003.

19



Appendix: Generalization of the Kernighan-Lin Heuris-
tic

The KL (Kernighan-Lin) heuristic, introduced in the context of the LABS problem, has
been illustrated as a simplified flowchart in Figure 3. This appendix provides additional
background and concludes with a pseudo code description of the generalized Kernighan-Lin
algorithm [19, 20].

The key ingredients to the generic KL algorithm are as follows:

1. The concept of a feasible solution, which encompasses any combinatorial object that
is encountered during the search. In graph partitioning, any partition of the vertices
is considered a feasible solution (originally, Kernighan and Lin insisted on a partition
that divided the vertices equally [18]). In the LABS problem, any binary sequence of
the specified length is a feasible solution.

2. A cost function c that maps any feasible solution z to its cost ¢(z). We will assume,
without loss of generality, that ¢(z) is a natural number and that an optimum solution
4 minimizes ¢(Z). The cost function is not necessarily the one defined by the problem
— it may be designed to guide the search toward solutions from which an optimum is
easier to find.

3. A set possible transformations that define the neighborhood N (z) of a feasible solution
x. Every element of A'(z) must be a feasible solution and must be derived from z via
one of the specified transformations. The original Kernighan-Lin heuristic considered
any transformation that swapped two vertices, one from each side of the partition.
Later variations looked at movements of a single vertex from one side to the other
(with a penalty for unbalanced partitions built into the cost function). In the LABS
problem, a transformation is the flip of a single bit and N (x) is the set of all strings
that are Hamming distance 1 from x.

4. A mowve occurs when the algorithm chooses a neighbor of the current feasible solution
2 and makes it the new feasible solution.

5. A marking strategy that guarantees that no move will be reversed during a single
sweep. In the original Kernighan-Lin heuristic a vertex was marked whenever it was
used in a swap, a marked vertex could not be used again in the same sweep, and the
end of a sweep occurred when all vertices were marked (at which point the next sweep
began by unmarking the vertices). In the LABS problem a bit position is marked when
that bit is flipped and no other flip can occur at that bit position during a sweep. The
marking strategy must satisfy two properties: (a) it must prevent the reversal of a
move performed during a sweep, and (b) it must terminate, that is, every move must
make progress toward a situation where the marks prevent any further move (and the
end of a sweep occurs).

The algorithm is shown in Figure 10.
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Generic KL Algorithm

bestCost «— oo
for the desired number of restarts do
Pick a random feasible solution x
bestRepCost «— c(x)
bestRepSolution «— x
improvement <— TRUE
while improvement do
> perform another sweep
improvement <— FALSE
Erase all marks
bestSweepCost «— c(x)
bestSweepSolution «— x
while an unmarked move is possible do
Choose y € N'(z) so that ¢(y) is minimized
Mark the move from x to y
Ty
if ¢(z) < bestSweepCost then
bestSweepCost «— c(x)
bestSweepSolution «— x
endif
end do > while move is possible
T« bestSweepSolution
if ¢(z) < bestRepCost then
bestRepCost «— c(x)
bestRepSolution «— x
improvement < TRUE
endif
end do > while improvement is possible
if bestRepCost < bestCost then
bestRepCost «— bestCost
bestRepSolution «— bestRepSolution
endif
end do > for ...restarts

Figure 10: The generalized Kernighan-Lin algorithm.
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