
Proc. of The Fifth Int. Workshop on Frontiers in Evolutionary Algorithms (FEA’2003) under JCIS’2003
Cary, NC, USA, September 26-30, 2003

Reliable Cost Predictions for Finding Optimal Solutions to
LABS Problem: Evolutionary and Alternative Algorithms

Franc Brglez1, Xiao Yu Li1, Matthias F. Stallmann1 and Burkhard Militzer2

1Computer Science Department, NC State University, Raleigh, NC 27695, USA

2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

ABSTRACT
The low-autocorrelation binary sequence (LABS) problem
represents a major challenge to all search algorithms, with
the evolutionary algorithms claiming the best results so far.
However, the termination criteria for these types of stochas-
tic algorithms are not well-defined and no claims have been
made about optimality. Our approach to find the optima of
the LABS problem is based on (1) experiments with problem
sizes for which optimal solutions are known, (2) an asymp-
totic analysis of statistics generated by such experiments, (3)
reliable predictions of the cost required to find optimal so-
lutions for larger problem sizes. The proposed methodology
provides a well-defined termination criterion for evolution-
ary and alternative search algorithms alike.

Keywords: fundamental combinatorial algorithms, perfor-
mance predictions and evaluations, low-autocorrelation bi-
nary sequence, evolutionary algorithms

1. INTRODUCTION
The low-autocorrelation binary sequence (LABS) problem
has a simple formulation. Consider a binary sequence of
length L, S = s1s2 . . . sL and their autocorrelations Ck(S) =∑L−k

i=1
sisi+k, si = {+1,−1}, for k = 1, . . . , L − 1. The en-

ergy function of interest is E(S) =
∑L−1

k=1
C2

k(S) which de-

fines the merit factor F of the sequence [1]: F = L2/(2E).
The objective of optimization is to find a sequence that

maximizes F , or equivalently, minimizes E. Finding an op-
timum sequence has important applications in communica-
tion engineering and is also of interest to physicists since the
sequence models one-dimensional systems of Ising-spins [2].

The asymptotic value for the maximum merit factor F
is known [1] and has also been re-derived using arguments
from statistical mechanics [2]: as L →∞, F → 12.3248. In
Figure 1 we superimpose the asymptotic limit, the known
optimal merit factors for L ≤ 60 from exact search algo-
rithms [3, 4], the best known merit factors for larger L from
stochastic algorithms [5, 6, 7, 8, 9], and also from this work.
We observe that (1) the exact factors, limited to values of
L ≤ 60, do tend to follow the projected trend, (2) the factors
reported by current heuristics are clearly diverging from the
asymptotic value as L > 100, and (3) the factors reported by
the heuristic in this paper do support the trend established
by the exact method. While on the scale shown this may
not seem much, the minimum energy levels reported in Fig-
ure 3(b) point to merit factors that are on par with the ones
reported only recently [9]. For example, given Emin = 208
for L = 64 in Figure 3(b), we find F = 9.84615. Note also

4

5

6

7

8

9

10

11

12

13

100 1000
m

er
it 

fa
ct

or

low autocorrelation binary sequence (LABS) length  (L)

exact

other heuristics

our heuristic

Open challenges ...

12.32

20

Figure 1: The divergence of earlier LABS heuristics.

that merit factors reported in [5, 6, 7, 8], are significantly
better than the solutions based on simulated annealing in [2].

The challenge of finding exact minima to the LABS prob-
lem can be best appreciated in terms of the runtime com-
plexity needed to solve the problem by the current gener-
ation of algorithms. The branch-and-bound algorithm de-
vised and implemented by Mertens [3] reports runtime com-
plexity of O(1.85L) and a total runtime of ‘313 hours of CPU
time on a four-processor Sun SPARCstation 20’ to find op-
timal merit factors for L ≤ 48. During 2003, additional
optimal merit factors were posted for L ≤ 60 [4]. An al-
ternative algorithm, using a stochastic approach, reports a
runtime complexity of O(1.68L) [8]. However, while being
able to replicate the known minima for L ≤ 48, the best
value reported for L = 61 is Emin = 246, relatively far from
226 shown in Figure 3(b).

Our approach to finding minima of the LABS problem
relies on two generic concepts [10]:

• Termination criterion ‘A’. We use the known LABS min-
imum value for a given L to terminate a local search
algorithm when the optimal sequence is found for the
first time. Variables recorded during this search in-
clude, at the minimum, runtime and samples (the num-
ber of cost function evaluations) that are required to
find the optimum. Both are random variables for which
we find statistics so we can deduce the probability of
success, Psucc, of finding the LABS minimum value,
given the runtime or samples constraints.

• Termination criterion ‘B’. Results of the preceding stage
allow us to predict, for a given value of L (for which the
minimum is unknown), the required runtime and re-
quired samples so that we may find the minimum with
the probability of success Psucc. The required samples
must be used as the termination criterion ‘B’ if exper-
iments are executed on a platform different from the
one used under the termination criterion ‘A’.



The paper is organized as follows. Section 2 defines the ex-
perimental setup and reports on LABS problem experiments
under the termination criterion ‘A’, using the Kernighan-
Lin solver (KL) [11, 12, 13]. Section 3 relies on data from
preceding section to report experimental results under the
termination criterion ‘B’, not only replicating the minima
from [3, 4] at a significanly lower computational cost but
also introducing new minima for L = 61, 62, 63, 64. Section
4 evaluates the asymptotic performances of the KL solver
and an ES solver which is based on the evolutionary strate-
gies algorithm [7], leading to new insights and conclusions.

2. TERMINATION CRITERION ‘A’
The experimental testbed we use is outlined in Figure 2.
Each experiment is initialized with a unique random seed
from the file randomTriplets that contains three random in-
tegers on each line, making the testbed environment cross-
platform consistent for any LABS solver that uses the stan-
dard IEEE random generator. Termination of each execu-
tion is controlled by the known optimum value stored in the
file knownOptima, available at [4].

Data of most interest generated by these experiments are
runtime (seconds, platform-specific) and samples (total num-
ber of samples to evaluate the cost function, platform-inde-
pendent). These two random variables are closely correlated
and, not surprisingly, both will have exponential distribution
for stochastic solvers such as KL or EA described later in
this paper.1 While the exponential distribution of runtime
or samples implies significant variability as illustrated in Fig-
ure 2, the variability is also predictable – shown by the close
fit of observed and theoretical distributions. For example, if
we allow the KL solver to search for the optimum sequence
of length L = 34 for 3,088,247 samples (from any randomly
choosen initial sequence), the probability of finding the op-
timum is 0.632. However, if we increase the search limit to
4*3,088,247 samples or 8*3,088,247 samples, the probability
increases to 0.981 or 0.999 respectively.

Our implementation of KL solver is based on the Kernighan-
Lin algorithm [11, 12, 13] and it samples the LABS cost
function in a sequence of well-defined moves, starting from
a randomly chosen initial configuration. If no further im-
provement can be gained and the known optimum is not
reached, the solver restarts from another randomly chosen
configuration. Just like runtime and samples, moves and
restarts both have exponential distribution. To capture the
asymptotic behavior of the KL solver, we performed 128 ex-
periments for each value of L ranging from 10 to 47. The
asymptotic behavior of average restarts is shown in Figure 3;
the average runtime and samples are shown in Figure 4. We
analyze average restarts in the next section.

3. TERMINATION CRITERION ‘B’
We ask the question: ‘how long should the KL solver run in
order to find the optimum for L > 47 with a given probabil-
ity of success Psucc?’ We find the answer by analyzing the
asymptotic behavior of either runtime, samples or restarts of
the KL solver under termination criterion ‘A’. An example
of data is shown in the top part of Figure 3. The average

1Exponential distribution of runtime has been observed not
only for stochastic solvers in different contexts [14], but also
within a unified framework for stochastic and branch-and-
bound solvers applied to SAT problem instances [15]. Dis-
tributions other than exponential have also been observed
in a number of related experiments with several solvers [15].

Experiments under termination ‘A’

.

Create LABSbed as a LABS-problem specific
testbed environment, simpler than but similar to
SATbed [16]. We consider (1) primary input files
randomTriplets and knownOptima, (2) user-specified
parameters L, solverList , nExperiments, (3) a solver
encapsulator SolverEncap A( L, randomTriplets,
knownOptima, solverList , nExperiments ) that
returns rawData(solver ,L), and (4) GetStats(
rawData(solver ,L) ) that returns statsData(solver ,L).

.

Invoke SolverEncap A to return a tabular report
rawData(solver ,L) for each solver and each L, with
data columns under labels such as instanceNum,
runtime, samples, solution. The number of rows is de-
termined by nExperiments. For the same value of L,
each experiment represents an equivalent problem in-
stance, initialized by the LABS solver with a different
random seed triple from the file randomTriplets.

.

Invoke GetStats to return various statistics
for random variables in each data column in
rawData(solver ,L), including characterization of
underlying distributions and the respective solvability
functions [16]. As shown below, the number of samples
(or function evaluations) required by the KL solver to
find the optimum solution for L = 34 for each of the
128 experiments has exponential distribution and can
vary dramatically. At best, an optimum solution is
found with 43,354 samples; at worst with 13,322,800
samples; with a median, mean and standard devia-
tion of 2,115,035, 3,088,247, and 3,006,546 samples,
respectively. The runtime mean value, specific to our
platform (a Linux PC with 266 MHz processor), is 6.60
seconds. Hyperlinks to complete raw and statistical
results of experiments such as illustrated here, covering
several solvers, and values of L up to 64 can be found
on the newly created LABSbed home page [17].

0

0.2

0.4

0.6

0.8

1

0.0E+0 2.0E+6 4.0E+6 6.0E+6 8.0E+6 1.0E+7 1.2E+7 1.4E+7

so
lv

ab
ili

ty
 fu

nc
tio

n 
(1

28
 e

xp
er

im
en

ts
)

KL-samples  to find optima  for L=34  (128 experiments)

observed

P_succ

Psucc = 1 - exp(-x / mean)
where
    x = KL-samples
    mean = 3,088,247  (samples)

0.632
P

succ

Figure 2: Experimental flow under termination ’A’.

values of restarts are based on 128 experiments for consec-
utive values of L = 20 to L = 47. Also shown are three
regression lines derived from the observed data for L ≤ 47
and data points as predicted by the respective regression
lines for values of L > 47:

nominal restarts predictor = 0.1351× 1.331L (1)

upper bound restarts predictor = 0.6754× 1.331L (2)

lower bound restarts predictor = 0.0270× 1.331L (3)

According to the nominal restarts predictor in (1), the num-
ber of required restarts to find the optimum with Psucc =
0.632 for L = 48, 60, and 64, is 123,851 or 3,832,423 or
12,031,820, respectively. However, not all average restarts



reported by the KL-solver are ‘on the line’ that corresponds
to the nominal restarts predictor. In fact, the maximum de-
viations from the nominal predictions for required restarts
for the range of 20 ≤ L ≤ 47 are very significant: for L = 26
the prediction is far too conservative (229 restarts predicted,
64 observed, a ratio of 3.59), for L = 41 the prediction is far
too optimistic (67,375 restarts observed, 16,726 predicted, a
ratio of 4.03). Such variations by far exceed the expected
statistical variability of the observed mean values of restarts:
the 95% confidence intervals for the observed mean values
are [52 ... 77] for L = 26 and [55,527 ... 79,222] for L = 41,
respectively. The empirical upper bound restarts predictor
in equation (2) simply multiplies the nominal restarts pre-
dictor by a factor of 5 which is based both on the worst-case
ratio of 4.03 and the observed confidence interval for mean
restarts at L = 41. Using the upper bound restarts predictor,
the number of required restarts for L = 41 has the value of
81,380. Similarly, the empirical lower bound restarts predic-
tor divides the nominal restarts predictor by a factor of 5.
Clearly, such bounds may need to be adjusted for larger val-
ues of L when more experimental data becomes available.

The effectiveness of these predictors as the termination
criterion ‘B’ is demonstrated by a series of experiments with
48 ≤ L ≤ 64 on a cluster of 4 workstations, summarized in
the table in Figure 3. Using the nominal restarts predic-
tor in equation (1), we performed 16 experiments for each
48 ≤ L ≤ 62, 8 experiments for L = 63, and 4 experiments
for L = 64. The columns reported in the table refer to se-
quence length (L), best known minimum (Ebest), best mini-
mum reported by KL solver (Emin), number of experiments
(nExpr), number of times Emin is found (nHits), number of
unique solutions reporting Emin (uSols), hit ratio of nHits
versus nExpr (hitR), runtime required to execute each ex-
periment (hours on a 266 MHz workstation under Linux).

Assuming that the nominal restarts predictor values that
terminate each run are ‘correct’, we expect each experiment
to find the optimum with Psucc = 0.632, i.e. we expect
all Emin to match or improve on Ebest and the hit ratio to
be 0.632. For 17 values of L in this exploratory study, we
observe a hit ratio mean of 0.768 with a standard deviation
of 0.191 – somewhat better than expected. The most likely
reason is that for most values of L in this range, the true
(and unknown) mean restart values are below the regression
line. For example, finding 16 hits out of 16 experiments for
L = 60 implies that the predicted mean value of 3,832,423
restarts should really be reduced by a factor of 3, 4, or 5.

Now, we cannot say that the values of Emin we report for
for L > 60 are exact optima. However, given the experimen-
tal results at hand, the minima reported for 16 experiments
with a hit ratio greater than or equal to 0.625 are the likely
optima. If this threshold is not maintained, the number of
restarts must be increased until we reach the threshold. To
increase the overall reliability of the predictions, we can also
increase the number of experiments while maintaining the
hit ratio close to 0.632. Increasing the number of experi-
ments for L = 63, 64 is in progress, with experiments for
L > 64 to follow.

Compared to performance of earlier algorithms, the per-
formance of the KL solver under the termination criterion
B as shown in the graph and the last column of the table in
Figure 3 is very effective: for L = 60 it took 16 × 20 = 320
hours to find not only one optimum solution but 16 solu-
tions from which 10 optima were found to be unique. As
shown in the graph, the runtime complexity of this solver is
O(1.42L). The question arises, can we do better with an al-
ternative solver. We return to the methodology introduced
in Figure 2 to address this question in the next section.

(a) restarts predictions for the termination criterion ‘B’

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

20 25 30 35 40 45 50 55 60 65 70

K
L 

te
rm

in
at

io
n 

pr
ed

ic
to

rs
  a

nd
  r

un
tim

e 
ho

ur
s

LABS  length (L) vs  KL-termination predictors & observed hours

runtime_hours (O(1.419^L))

restarts_observed (O(1.331^L))

restarts_predictor_lb (O(1.331^L))

restarts_predictor_nom (O(1.331^L))

restarts_predictor_ub (O(1.331^L))

hours = 1.552E-8 * 1.419^L

restarts_predictor_ub =
0.6754 * 1.331^L

restarts_predictor_nom =
0.1351 * 1.331^L

(b) summary of experiments based on predictions above

L E1
best Emin nExpr nHits uSols hitR hours2

48 140[4] 140 16 11 7 0.6875 0.3
49 136[4] 136 16 12 9 0.75 0.4
50 153[4] 153 16 15 11 0.9375 0.6
51 153[4] 153 16 5 3 0.3125 0.8
52 166[4] 166 16 12 7 0.75 1.2
53 170[4] 170 16 12 8 0.75 1.7
54 183[4] 183 16 10 6 0.625 2.4
55 171[4] 171 16 14 7 0.875 3.5
56 192[4] 192 16 16 7 1 5.0
57 188[4] 188 16 11 3 0.6875 13.2
58 197[4] 197 16 13 7 0.8125 9.8
59 205[4] 205 16 16 9 1 13.9
60 218[4] 218 16 16 10 1 20.0
61 226[9] 226 16 10 6 0.625 27.7
62 235[9] 235 16 16 10 1 38.8
63 207[9] 207 8 6 2 0.75 55.0
64 208[9] 208 4 2 2 0.5 78.6

1values shown for L < 61 are known to be optimal.
2runtime required to execute each experiment on

a 266 MHz workstation under Linux.

Figure 3: Termination criterion ‘B’ results with KL.

4. LABS SOLVER COMPARISONS
Results with the KL solver under the termination crite-
rion ‘B’, summarized in Figure 3, show significant improve-
ment over earlier published results, maintaining quality of
reported minima while reducing the cost of computation.
However, the current performance still would not support
similar evaluations for L much greater than 72. For L = 77,
the projected runtime (using 1.552e-8*1.419L) is 0.94 years;
if the processor performance would increase tenfold, it would
still take 1.1 years to complete similar runs for L = 84.
What is needed is a LABS solver with both (1) runtime com-
plexity significantly better than O(1.419L) and (2) constant
factor significantly better than 1.552e-8 relative to our 266
MHz platform.

We argue that the performance of any LABS solver under
termination criterion ‘B’ can be assessed by its performance
under the termination criterion ‘A’ as outlined in Figure 2.
In this section we apply identical evaluation criteria to two
solvers: KL solver (described in Section 2), and an ES solver
which is based on the evolutionary strategies algorithm [7].



Evolutionary strategies (ES) in its standard form start
with an initial parent population of λ sequences generated
at random (here λ = 10). Then µ children are generated,
each by selecting a parent at random and applying a ran-
domly chosen mutation operation to it. From the µ children
(here µ = 3 ∗ L), one selects the λ best individuals, which
form the next parent population. The process is repeated
until a termination criterion is met (either a known optimum
is found – method ‘A’, or the process is repeated for an esti-
mated number of generations – Method ‘B’). The efficiency
of an ES depends significantly on the type of mutations.
Militzer et al. [7] developed a novel mutation operator that
appears to work particularly well for the LABS problem.

Similar to KL, the ES solver also samples the LABS cost
function, but now in a sequence of well-defined generations
as outlined above. Our experiments demonstrate that the
solvability function recorded for the ES solver, also in terms
of samples, has an underlying exponential distribution sim-
ilar to the one depicted for the KL solver in Figure 2. In
fact, for the value of L = 34, the mean number of samples
reported by the ES solver is 2,925,765 – slightly better than
the mean number of samples 3,088,427 reported by the KL
solver. A t-test declares both means to be equivalent, and a
χ2-test declares both distributions to be equivalent.

Comparison with a single value of L is not sufficient; we
rely on the asymptotic analysis for averages and ratios of
averages based on 128 experiments for consecutive values of
L = 20 to L = 47 for both KL and ES solvers. As shown
in Figure 4, we pair data reported by the two solvers in
terms of average samples, average runtime (in seconds), and
the sampling efficiency defined as the ratio of the average
number of samples to the average runtime. For each set of
data we also show a regression line, similar to the one for
restarts in Figure 3, that can be used to nominally predict
the asympotic behavior of each solver:2

ES samples predictor = 5.558E+1× 1.370L (4)

ES runtime predictor = 7.108E−4× 1.397L (5)

ES efficiency predictor = 7.819E+4× 0.981L (6)

KL samples predictor = 1.553E+1× 1.423L (7)

KL runtime predictor = 1.287E−5× 1.463L (8)

KL efficiency predictor = 1.206E+6× 0.973L (9)

While we have not included the lower and upper bound pre-
dictors along with the nominal predictors, it is important
to consider them in predictions of each solver’s parameters
as well as in comparisons between the two solvers. The
upper and lower bounds on the predictor variability of the
KL-solver track very well with the ones discussed in detail
for KL-restarts in the preceding section: ratios of predicted
to observed values can exceed a factor of 4.0. Similarly to
the bounds shown for KL-restarts and including statistical
variations, the bounds based on multiplying or dividing the
nomimal values by 5 are valid for both KL samples predictor
and KL runtime predictor. Note however, that the variabil-
ity of KL efficiency predictor is negligible.

In contrast, data points reported by the ES-solver show
relatively less variability, up to a factor of 2.0 above and 1.7
below the nominal ES samples predictor – until we reach the
value of L = 43. At this value, we record a nearly 14-fold in-
crease above the nominal ES samples predictor. Also, there
is a reduction by a factor of 4.3 at L = 46. Clearly, addi-

2Only the consecutive values of L = 20 to L = 47 are used
in the least-square fit to each data set. Data points for the
ES-solver for L = 50, 54, 58 are shown for illustration only.

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

20 25 30 35 40 45 50 55 60 65 70

K
L 

an
d 

E
S

 to
ta

l s
am

pl
es

LABS  length (L) vs  KL and ES total samples

ES-samples

ES-samples (O(1.370^L))

KL-samples (O(1.423^L))

5.558E+1 *1.370^L

1.553E+1*1.423^L

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

20 25 30 35 40 45 50 55 60 65 70
K

L 
an

d 
E

S
 ru

nt
im

e 
(s

ec
on

ds
)

LABS  length (L) vs  KL and ES runtime (seconds)

ES-runtime

ES-runtime (O(1.397^L))

KL-runtime (O(1.463^L))

1.287E-5 *1.463^L

7.108E-4  *1.397^L

2E+5

8E+5

20 25 30 35 40 45 50 55 60 65 70

K
L 

"s
am

pl
in

g 
ef

fic
ie

nc
y"

LABS length (L)  vs  KL  "sampling efficiency" (se)

KL-Samples/Second (O(0.973^L))

se(L) = 1.206E+6 * (0.973)^L

2E+4

6E+4

20 25 30 35 40 45 50 55 60 65 70

E
S

 "
sa

m
pl

in
g 

ef
fic

ie
nc

y"

LABS length (L)  vs  ES "sampling efficiency" (se)

ES-Samples/Second (O(0.981^L))

ES-Samples/Second

se(L) = 7.819E+4 * (0.981)^L

Figure 4: Asymptotic comparisons of ES and KL.

tioanl consecutive data points are needed to more completely
characterize the asymptotic performance of the ES-solver;
its performance variability may or may not exceed the vari-
ability demonstrated for the KL-solver up to the value of
L = 64 in the preceding section. The ES-solver data points
shown for values of L = 50, 54, 58 do track the respective
regression lines closely for both ES samples predictor and
ES runtime predictor – however, we have no information
about the points in-between. Note also that the sampling
efficiency of the ES-solver has significantly more variability,



starting at L = 23, than the one shown for the KL-solver.
Asympototically, the nominal performance of the ES-solver

appears better: there is a crossover of the samples predic-
tors at L = 34 and the runtime predictors at L = 88. How-
ever, these crossovers are not well-defined due to the demon-
strated variability and most importantly, there is a signif-
icant difference in the sampling efficiency between the two
solvers; for L = 34 the average runtimes are 6.60 and 74.5
seconds for KL and ES, respectively. A significant improve-
ment of the sampling efficiency of the ES solver is needed to
make it competitive, for L < 88, with the current version of
the KL solver.

5. CONCLUSIONS AND FUTURE WORK
We have demonstrated a methodology that, while not guar-
anteeing optimum solutions for LABS problem, finds optima
with high degree of confidence. For values of L < 88, the
solver of choice is KL (at present). Our methodology, to
compare two LABS solvers not only in terms of runtime
but also samples required to find optimal solutions, pro-
vides new insights about the effectiveness and the efficiency
of evolutionary strategies. Compared to KL, the ES-based
search for optima may require significantly less samples (on
average) as the problem size increases, however the chal-
lenge to reduce the cost of computing these samples should
be addressed next by the ES-based search algorithms. The
challenge for KL-based algorithms is clearly to reduce the
number of samples required to find optimal solutions.

Reader is invited to visit the LABSbed home page [17],
not only to access complete archives of experimental data
summarized in this paper but also to access updates on (1)
on LABS minima for values of L > 64 and a call for collabo-
ration, (2) improved performance of new LABS solvers, (3)
status of LABSbed tutorial, documentation, and ready-to-
install solvers. A unique feature, intrinsic to the approach
in this paper is the generation of multiple solutions for a
given value of L. The number of these solutions in the table
below is exact for values of L ≤ 35. For values of L > 35,

L 0 1 2 3 4 5 6 7 8 9
4 8 4 28 4 16 24

10 40 4 16 4 72 8 32 44 16 8
20 8 4 24 24 8 8 24 4 8 8
30 16 8 8 8 8 8 8 8 8 8
40 8 4 8 4 8 4 24 28 8 12
50 12 4 8 8 8 8 8 4 8 12
60 12 8 12 4 4

the values listed are conjectured from our experiments to
date. A total of 400 experiments under termination ’A’ have
been run for L <= 47, so values listed are most likely exact.
Values for L > 47 are based on smaller number of experi-
ments as listed in the table of Figure 3. Since it is clear that
the number of solutions must always be a multiple of 4, we
have rounded the solutions found to the nearest such value.
For example, when we report the number of solutions for
L = 60 as 10 in Figure 3, we report 12 in the table above.
We anticipate new insights by (a) correlating the number of
solutions to the observed and predicted variability in solver
performance and (b) analyzing solution structures to im-
prove the search process for the next generation of LABS
solvers.

Acknowledgements. The ready access to the exact min-
ima of the LABS problem posted by Stephan Mertens [4] has
been of great value in this research. The productive partici-
pation of the undergraduate cluster computing project team
led by Jonathan B. Cage was instrumental for the LABS val-
idation experiments for L = 48–60 and the LABS frontier

experiments for L = 61–64. The just-in-time table of best
merit factors [9] sent to us by Joshua Knauer also provided
an update of our Figures 1 and 3.

6. REFERENCES
[1] M. J. E. Golay. The merit factor of long low

autocorrelation binary sequences. IEEE: Trans. on
Information Theory, 28:543–549, 1982.

[2] J. Bernasconi. Low autocorrelation binary sequences:
statistical mechanics and configuration space analysis. J.
Phys., 48:559–567, April 1987.

[3] S. Mertens. Exhaustive search for low-autocorrelation
binary sequences. Journal of Physics A: Mathematical and
General, 29:473–481, 1996.

[4] S. Mertens. Ground states of the Bernasconi model with
open boundary conditions, 2003. See
http://odysseus.nat.uni-magdeburg.de/~mertens/-
bernasconi/open.dat.

[5] C. de Groot, D. Wurtz, and K. H. Hoffmann. Low
autocorrelation binary sequences: Exact enumeration and
optimization by evolutionary strategies. Optimization
(UK), 23(4):369–384, 1993.

[6] F.-M. Dittes. Optimization on rugged landscape: A new
general purpose monte carlo approach. Physical Review
Letters, 76:4651–4655, 1996.

[7] B. Militzer, M. Zamparelli, and D. Beule. Evolutionary
search for low autocorrelated binary sequences. IEEE
Trans. on Evolutionary Comp., 2(1):34–39, April 1998.

[8] S. Prestwich. A Hybrid Search Architecture Applied to
Hard Random 3-SAT and Low-Autocorrelation Binary
Sequences. The Sixth Int. Conf. on Principles and Practice
of Constraint Programming, LNCS, Springer-Verlag,
1894:337–352, 2000.

[9] J. Knauer. Home Page of LABS Problem Merit Factor
Records, 2003. See
http://www.cecm.sfu.ca/~jknauer/labs/records.html.

[10] F. Brglez, X. Y. Li, and M. F. Stallmann. The LABS
Problem and an Encapsulation of Local Search Algorithms
for Improved Performance and Reliability. Technical
Report, 2003-TR@CBL-LABS, March 2003. Available at
http://www.cbl.ncsu.edu/publications/.

[11] Woei-Kae Chen and Matthias F.M. Stallmann. Local search
variants for hypercube embedding. In Proc. 5th Distrib.
Memory Computing Conf., pages 1375 – 1383, 1990.

[12] W.-K. Chen, M. Stallmann, and E.F. Gehringer. Hypercube
embedding heuristics: An evaluation. International Journal
on Parallel Programming, 18(6):505 – 549, 1989.

[13] B.W.Kernighan and S.Lin. An efficient heuristic procedure
for partitioning graphs. BSTJ, pages 291–307, 1970.

[14] Holger H. Hoos and Thomas Stützle. Local Search
Algorithms for SAT: An Empirical Evaluation. Journal Of
Automated Reasoning, 24, 2000.

[15] F. Brglez, X. Y. Li, and M. Stallmann. On SAT Instance
Classes and a Method for Reliable Performance
Experiments with SAT Solvers. Annals of Mathematics and
Artificial Intelligence (AMAI), Special Issue on
Satisfiability Testing, 2003. Under review as the revision of
the 2002-SAT Symposium paper. Available at
http://www.cbl.ncsu.edu/publications/ .

[16] F. Brglez, M. F. Stallmann, and X. Y. Li. SATbed: An
Environment For Reliable Performance Experiments with
SAT Instance Classes and Algorithms. In Proc. of SAT
2003, Sixth Int. Symp. on the Theory and Applications of
Satisfiability Testing, May 5-8 2003, S. Margherita Ligure
- Portofino, Italy, 2003. A revised paper is available at
www.cbl.ncsu.edu/publications/ .

[17] F. Brglez, M. Stallmann, and X. Y. Li. LABSbed Home
Page: A Tutorial, A User Guide, A Software Archive,
Archives of LABS Instances and Experimental Results,
2003. See www.cbl.ncsu.edu/OpenExperiments/LABS/ .


