
# Stream Flow Simulation

Name: Heroda Abera



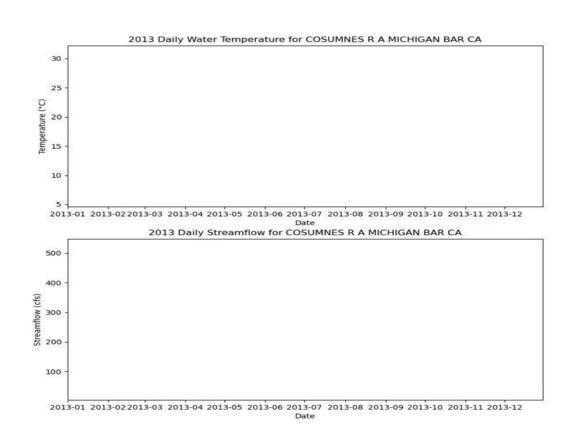
# Stream flow simulation method

### Goals and Method:

- Data analysis of stream flow and temperature with seasonal variations to understand hydrological relations
- Retrieved a historical stream flow and temperature datas using NWIS API provided by USGS water Quality portal
- Visualizing/animating daily streamflow and temperature fluctuations over time for a site at Cosumnes River at Michigan Bar, CA
  - Site number = 11335000
  - Parameter code:
    - discharge/streamflow = 00060
    - Temperature = 00010

Created an interactive map showing the sampling sites and names for california

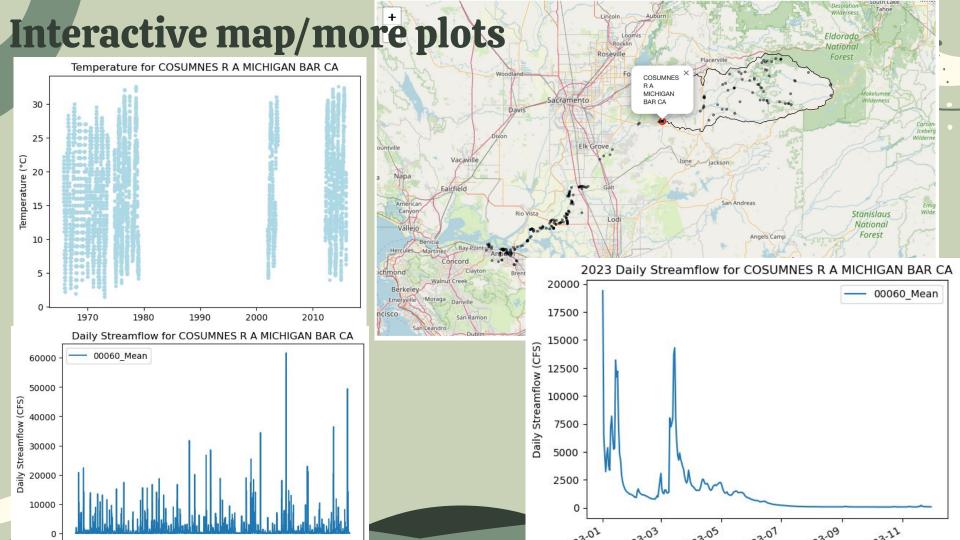
#### AVAILABLE DATA:


| Data Type                                                                                  | Begin Date | End Date   | Count |
|--------------------------------------------------------------------------------------------|------------|------------|-------|
| Current / Historical Observations (availability statement)                                 | 1983-03-11 | 2023-11-27 |       |
| Daily Data                                                                                 |            |            |       |
| Temperature, water, degrees Celsius                                                        | 1965-10-01 | 2016-03-02 | 13281 |
| Discharge, cubic feet per second                                                           | 1907-10-01 | 2023-11-26 | 42425 |
| Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees Celsius | 2001-12-28 | 2003-09-29 | 1214  |
| pH, water, unfiltered, field, standard units                                               | 2001-12-28 | 2002-11-25 | 632   |
| Suspended sediment concentration, milligrams per liter                                     | 1962-10-01 | 1970-09-29 | 2445  |
| Suspended sediment discharge, short tons per day                                           | 1962-10-01 | 1970-09-29 | 2921  |
| Daily Statistics                                                                           |            |            |       |
| Discharge, cubic feet per second                                                           | 1907-10-01 | 2022-10-17 | 42021 |
| Suspended sediment concentration, milligrams per liter                                     | 1962-10-01 | 1970-09-29 | 2445  |
| Suspended sediment discharge, short tons per day                                           | 1962-10-01 | 1970-09-29 | 2921  |
| Monthly Statistics                                                                         |            |            |       |
| Discharge, cubic feet per second                                                           | 1907-10    | 2022-10    |       |
| Suspended sediment concentration, milligrams per liter                                     | 1962-10    | 1970-09    |       |
| Suspended sediment discharge, short tons per day                                           | 1962-10    | 1970-09    |       |
| Annual Statistics                                                                          |            |            |       |
| Discharge, cubic feet per second                                                           | 1908       | 2023       |       |
| Suspended sediment concentration, milligrams per liter                                     | 1963       | 1970       |       |
| Suspended sediment discharge, short tons per day                                           | 1963       | 1970       |       |
| Peak streamflow                                                                            | 1907-03-19 | 2021-10-25 | 116   |
| Field measurements                                                                         | 1936-02-24 | 2023-10-12 | 377   |
| Field/Lab water-quality samples                                                            | 1952-10-23 | 2015-07-10 | 398   |
| Water-Year Summary                                                                         | 2005       | 2022       | 18    |

#### OPERATION

Record for this site is maintained by the USGS California Water Science Center

Email questions about this site to California Water Science Center Water-Data Inquiries


# **Animation and Plots**



## Findings:

In general, higher streamflow rates or discharge may be associated with low water temperatures during winter seasons, possibly due to increased precipitation. However, spring seasons may also contribute to increased stream flow due to snowmelt.

Stream flow may be expected to be low during summer seasons due to increased temperatures causing evaporation. However, there is not a direct relationship between streamflow and water temperatures because many other environmental effects, such as vegetation cover, infiltration, rainfall/precipitation patterns, and snowmelt, can influence this dynamic relationship.



### **Work citation**

Blodgett, David. "The Hydro Network-Linked Data Index." Water Data For The Nation Blog, 20 Nov. 2020, waterdata.usgs.gov/blog/nldi-intro/.

"USGS 11335000 COSUMNES R A MICHIGAN BAR CA." USGS 11335000 Cosumnes R A Michigan Bar Ca, waterdata.usgs.gov/nwis/inventory/?site\_no=11335000&agency\_cd=USGS. Accessed 28 Nov. 2023.

"Welcome." *Welcome - Dataretrieval 0.1.Dev1+g185ebe4 Documentation*, doi-usgs.github.io/dataretrieval-python/index.html#. Accessed 28 Nov. 2023.