
EPS 109 “Computer Simulations in Earth and Planetary Science” Instructor: B. Militzer

Computer Lab Assignment 11

Radioactive Decay, Keplerian Orbits, and
Runge-Kutta Method

(1) In lecture 16, we discussed a numerical algorithm to solve the following ordinary differential
equation to calculate how fast the unstable isotope carbon-14 decays:

Please use c14(t=0)=1 as initial condition and a decay constant of k=0.00012097 year-1. Write
your own 10 lines of Matlab code to solve this equation using the discretized form:

€

c(t + Δt) = c(t) 1− kΔt[]
Use a step size of 10 years. At the end, make a plot that compares your numerical solution to the
analytical solution,

€

c(t) = c(0) e−kt . What is half-life of carbon-14?

(2) Now we want to use the same method to solve Newton’s equation for a planet orbiting the
sun. Instead of a single variable c, we now have four variables that change with time,

€

 r = (x, y)  v = (vx,vy)

dvx

dt
= −

GmS

r3 x

dvy

dt
= −

GmS

r3 y

dx
dt

= vx

dy
dt

= vy

For simplicity, set mS=106, G=3×10-6, Δt=10-3 and integrate for 10 time units. As initial
condition, I recommend x=1, y=0, vx=0, and vy=2. Make a plot y(t) versus x(t). If this is anything
like an ellipse then you have succeeded in this part of the lab. Congratulations!

(please turn over)

€

dc14
dt

= −k c14 (t)

EPS 109 “Computer Simulations in Earth and Planetary Science” Instructor: B. Militzer

(3) Now we re-write the code a bit introducing a Matlab function that computes

€

d y
dt

= f (t,  y),

where 𝑦 = [x y vx vy]. Your code should still use the Euler method and should do exactly the
same calculation as before. Review lecture 19. Now open a separate file “kepler_ode.m” and
write a function:

function ydot = kepler_ode(t,y)

%obtain ‘r’ and ‘v’ from ‘y’
r = …
v = …

% use the following three variables from the main worksheet
% must declare them 'global' here and there
global ms G M

% Now put your formula for the force and acceleration here
F = …
a = …

% set the column ‘ydot’ that will be returned to the calling routine
ydot = …

This is all you need in the file “kepler_ode.m”. In your main code you call this function with
 dydt = kepler_ode(t,y);
further below you update the vector ‘y’

y = y+ dydt .* dt;
Remove the old way of updating vectors ‘r’ and ‘v’. Instead generate ‘r’ and ‘v’ each time from
the current vector ‘y’. Now make sure that your code still works and the plots are the same. Well
done if it does!

(4) Instead of calling “kepler_ode.m” only once per time step dt (called h below), we want to call
it 4 times as specified in the Runge-Kutta algorithm:

Introduce intermediate vectors F1… F4 and compute the much more accurate new ‘y’ vector

Now run the new code and see if you still get an ellipse. For a given dt, this integration method
will be much more accurate. If you have time, compare the accuracy of the Euler and the Runge-
Kutta method for different time steps. How would you define a measure of accuracy?

€


F 1 =

f (tn,
 y n)


F 2 =


f (tn + h

2 ,
 y n + h

2


F 1)


F 3 =


f (tn + h

2 ,
 y n + h

2


F 2)


F 4 =


f (tn + h,  y n + h


F 3)

€

 y n +1 =
 y n +

h
6

F 1 + 2


F 2 + 2


F 3 +


F 4[]

